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Abstract
This study aims the show important tools, possible applications, existence of fixed point theory, results
for mappings and contractive mappings on complete G-Metric Spaces. The common fixed point theorem for
maps satisfying a general contractive condition of integral type for a pair of weakly compatible mappings in
fuzzy metric spaces, using property in cone metric spaces, of expansive mappings in generalized metric spaces,
in complex valued metric spaces and for weakly compatible mappings under contractive conditions of integral
type in complex valued metric spaces are considered. The existence of multiple solutions and result of one
nontrivial solution of the boundary value problems for nonlinear second. Order differential equations and for
some nonlinear systems with singular laplacian and one nontrivial solution for two point are obtained.
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1.0 Introduction:

We deal with some important information of various kinds of weak commutativity for the computation of fixed points
we start frome the concept of weakly commuting maps to the latest biased maps of type(Ar)and type (As)applications can be
found in dynamic programming, approximation theory , variational inequalities and solution of nonlinear integral equations
we show some fixed point results for mapping satisfying sufficient conditions on complete G-metric space, also we showed
that if the G-metric space is symmetric, then the existence and uniqueness of these fixed point results follow from well-known
theorems in usual metric space( ).

We show some common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces both in
the sense of Kramosil and Michalek and in the sense of George and Veeramani by using the new property and give some
examples. we show some common fixed point theorems for different types of contractive conditions.

We establish the precise condition concerning the behavior of at in8nity and zero for the existence of solutions with
prescribed nodal properties. Then we derive the existence and the multiplicity of nodal solutions to the problem. Our argument
is based on the shooting method together with the Strum’s comparison theorem. We establish several results related to existence,

nonexistence or bifurcation of positive solutions for the boundary value problem where QCRN (N 2 2) is a smooth bounded
domain, is a positive parameter, and f is smooth and has a sublinear growth. The main feature in the
presence of the singular nonlinearity g combined with the convection term Multiple critical points theorems

for non-differentiable functionals are established.
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Two common fixed theorems for weakly compatible mappings satisfying general
contractive conditions of integral type in metric spaces are show and an illustrative
example is provided using (E.A) property and (CLR) property common fixed point
results for weakly compatible mappings, satisfying integral type contractive condition in
complex valued metric spaces are investigated.

With a homeomorphism of the ball are considered, under various boundary
conditions on a compact interval For non- homogeneous Cauchy, terminal and some
Sturm-Liouville boundary condi-tions including in particular the Dirichlet-Neumann and
Neumann-Dirichlet conditions, existence of a solution is proved for arbitrary continuous
right- hand sides f: For Neumann boundary conditions, some restrictions upon f are
required, although, for Dirichlet boundary conditions, the restrictions are only upon _ and
the boundary values. For periodic boundary conditions, both _ and f have to be suitably
restricted. Existence results of positive solutions for a two point boundary value problem
are established. No asymptotic condition on the nonlinear term either at zero or at infinity
is required. The aim of this paper is to present a coincidence point theorem for
sequentially weakly continuous maps. Moreover, as a consequence, a critical point
theorem for functionals possibly containing a nonsmooth part is obtained.

1.1 Objective of the Study

This study aims to fulfill the following objective:

show important tools, possible applications, existence of fixed point theory, results for
mappings and contractive mappings on complete G-Metric Spaces.

1.2 The importance of the study:

The importance of this study is the importance of the subject that is addressed in the
study, which is the Common Fixed Point for Weakly Compatible and Sequentially
Continuous

Mappings in Metric Spaces:

Introduce complex valued metric spaces and obtain sufficient conditions for the existence
of common fixed points of a pair of mappings satisfying contractive type conditions

2.1 Preliminaries

In this section, we recall some definitions and useful results which are already in the
literature.

Definition[1]: Let {X,&} be ametric space andj ={%,7]. A mapping

% X ¥ J — Xiscalled convex structure on Xiffor all x,v,u £ Xand

=
el
Wil
it
4

u, W{x,3 ld{wx) + (1 —4)d{(w.¥).A metric spacewith  convex
. . 2
structure iscalled convex metric space®.

s
I/
i

L4

(a) Anonempty subset & of a convex metric space Xissaidtobeconvex if

.

i A K = Aeidil
{x,v,4) £ Kforallx,v € Kand 4 € [5,1],

b) Kissaidtobeg-starshaped  if  there exists apoint g £ Ksuch that

TAF £ e T

e 1V — T e — T 4 -
Wix.yv.A} € Kforallx € K and A £ ].

Definition|2]:Aconvex metric space X is said to satisfy the condition(*),
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Definition [3]: see [1]. Let X be a nonempty set, and let G: X X X X X — R"be a
function satisfying the following properties:

(GIVG{+ v =Y =0 lf v =3y = 7

WAL Ay van ) u A ¥ Ly
Tl ate BV T o PR | e omr W L mr
[REFAF LR & 5 S 4 U for all nyeca with x # ¥,

(G4)G{x, vz} = G{x,z,v) = G{vy,z,x} = -, (symmetry in all three variables
{G56{x, v, for all xv.,z,a € X (rectangle
inequality)

Then the function & is called ageneralized metric, or, more specifically, a &-metricon X,

and the pair(X, G }is called aG-metric space'®.

—~

Definition [4]: (see [ 1 ]).Let{ ¥, G jbe aG-metric space, and let{x,, jbe sequence of points
X 3, if

Ci, and one says that the sequence{x,, }, is G-convergent to x.

el

of , a point x¢£ is said to be the limit of the sequence{x,

ey
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3, then for any € = O, there exists ¥ € ¥

7

3, is called G-

Definition [5]: (see [ 1 ]). Let{X, Gibe aG-metric space, a sequence {x,
€ N such that 6{x,, x,,.x,) <e , for all

Cauchy if for every £ = &, there is ¥

\ f
J—=+0asnm,i—=o

Ty T, Ly

n,m,l = N ;thatis, if G{x,, x_, x

G5 be two G-metric spaces, and let

is said to be G-continuous at a point & £ X if
i =0 such that x,y €X ; and G{ax,vi=<d

A function f is G-continuous at X if and only if it is G-continuous at all @ € X,

Deﬁmtlon [6]: A G-metric space {X, G}is called symmetric G-metric space if

.G} is said to be G-complete (or complete G-metric

Ty

if every G- Cauchy sequence in (X, ¢ 'ils G-convergent in (X, G

1
i
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Mapping on Complete G-Metric Spaces

During the sixties, the notion of 2-metric space introduced by Géhler as a generalization

of usual notion of metric space{X,#}. But different proved that there is no relation

between these two functions, for instance, show that 2-metric need not be continuous
function, further there is no easy relationship between results obtained in the two
settings”.

In 1992, BapureDhage in his Ph.D. thesis introduce a new class of generalized metric
space calledD-metric spaces ([59,60]).In a subsequent series, Dhage attempted to develop
topological structures in such spaces (see [60—62]). He claimed that D-metrics provide a
generalization of ordinary metric functions and went on to present several fixed point
results.

But in 2003 in collaboration with Brailey Sims, we demonstrated , that most of the
claims concerning the fundamental topological structure of Z-metric space are incorrect,

so, we introduced more appropriate notion of generalized metric space as follows.
Complex Valued Metric Spaces

Since the appearance of the Banach contraction mapping principle, a number of articles
have been dedicated to the improvement and generalization of that result. Most of these
deal with the generalizations of the contractive condition in metric spaces.

Ghaler'® generalized the idea of metric space and introduced a 2-metric space which was
followed by a number dealing with this generalized space. Plenty of material is also
available in other generalized metric spaces, such as, rectangular metric spaces, semi
metric spaces, pseudo metric spaces, probabilistic metric spaces, fuzzy metric spaces,

Quasi metric spaces, Quasi semi metric spaces, D-metric spaces, and cone metric spaces
7

Let T be the set of complex numbers and z,.z, € . Define a partial order = on T as
follows:

=, 5z ifand onlyvif Beiz.3 = Re{z2y.Imiz.3 = Imiz.}
Iy Zrandonly 1l Reiz4 j = Ae{Z4 ) 1Mz} = Imi{Z,]

It follows that




= z, and one of (i), (ii), and (iii) is satisfied and

a
i

In particular, we will write z, % z, if z

-
i

-

we will write z; < z, if only (iii) is satisfied. Note that

O - e -
U oI, —= [Z,1 < 15,1
i =1 =320

s e
- T
Ly ~d Zopdoa /3 24 = g,

Definition [8]: Let ¥ be a nonempty set. Suppose that the mapping d:X X X — C,

satisfies®
(i) 0 = d{x, v}, forall x,¥ € ¥ and 4{x,¥} = Cifand only if x = ¥,
i) d{x,y) =d{v,x)forall x,v €X;
(i)d{x.y) S d{x.z) +d{z.v) forall x,y,z € X.

1

Then 4 is called a complex valued metric on X, and {X,d} is called a complex valued

metric space. A point x £ X is called interior point of a set A = & whenever there exists
& < v £ £ such that

Bix vV =lv o ¥.dix vy =+1C A
i Sl A LFr e s R P

A point x £ X is called a limit point of 4 whenever for every ¢ < » £ €,
Blx,r)n(A\X) £ ¢

A is called open whenever each element of 4 is an interior point of 4. A subset & & X
is called closed whenever each limit point of & belongs to £. The family

-
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is a sub-basis for a Hausdorff topology ton ¥

o

Let x,, be a sequence in X and x € X. If for every ¢ € €, with & =< ¢ there is

ny € Nsuch that for all n =mn, d{x, x) <, then {x_}is said to be convergent,

{ ~w}converges to x and x is the limit point of {x,}. We denote this by lim, x, = x, or

X, . If for every ¢ €€ with 0 < ¢ there is ny € N such that for all
= V=< ¢, then {x,} is called a Cauchy sequence in{ . If every

Cauchy sequence is convergen n {X,d}, then (X, d}is called a complete complex valued

F n o

metric space.

3.1 Main Results:
Theorem: Let (X, G} be a complete G-metric space, and let T: X — X be a mapping

satisfying one of the following conditions” :
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or

i, then T has a unique fixed point (sayu,

"1s G-continuous at .

uw),and T

[53

satisfies condition (38), then for all x

ke
7
F

Suppose that

Proof

G(Tx, Ty, Ty) < aG(x,y,v) + bG(x,Tx, Tx) + (¢ + d)G(y, Ty, Ty)

and (4) , we get

is symmetric, then by definition of metric

TR
i

A

b

¥ i
1A

Suppose that

—~
<3
~

, then the existence and uniqueness of the fixed

point follows from well-known theorem in metric spaceX, dGseel0.

In this line, since

d(3), we get

,d Jan

T

However, if (X, G} is not symmetric then by definition of metric (

o

ey

, then the metric condition gives no information about this map since

s
S

—
=

ty

for all x,3

need not be less than 1. But this can be

proved by G-metric.

be an arbitrary point, and define the sequence

7
X
S

Letx, €X

we have

—_
N=)
~

then
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completeness of (¥, 7), there exists 1 € X such that {x_]is G-converge to

A

Suppose that T{w} = u, then

To prove uniqueness, suppose that 1 # ¥ such that T{#1 = v, then

— L1
1

(12)

which implies that 1 = .

To show that T is G-continuous at u, let {v YZ ¥ be a sequence such that

T
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(18)

for all x y,.z £X, where 0=a+b+c+d=1 Then T has a unique fixed point (say

Proof: From the previous theorem, we see that 7™ has a unique fixed point (say ) ,that
1, {u) = T™{T{u)), so T{u} is another

L
fixed point for T™ and by uniqueness Tu = .

Common Fixed Point Theorems

We introduce complex valued metric spaces and obtain sufficient conditions for the
existence of common fixed points of a pair of mappings satisfying contractive type
conditions The results obtained substantially extend and improve several previous results,
particularly of Branciari Rhoades and of Vijayaraju et al. A nontrivial example with
uncountably many points is also provided to support the results presented herein.

1 PR . - .
Lemma"”: Let (X, d) be a complex valued metric space and let {x,.} be a sequence in .

Then {x,,} converges to x if and only if {d{x,.x}| = Cas# = .

!

Proof: Suppose that{x,,} converges to x. For a given real number & > 0, let

=y

}! — 0 asn—o. Then given ¢ € € with 0 = ¢, there

el
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L*]

w2
=1
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I —
IFl <
| R

For this &, there is a natural number ¥ such that
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This means that d{x_,x} < ¢ forall = = N. Hence {x,} converges to x.

11 . : .
Lemma ™V: Let (X, d) be a complex valued metric space and let {x,,} be a sequence in
-

-

i

=]

das ¥

. Then {x,} is a Cauchy sequence if and only if {d{x,,x,..,.}

e

Proof: Suppose that {x,} is a Cauchy sequence. For a given real number & = &, let

Then @ < ¢ € € and there is a natural number &, such that:

i T o | o m_ AT
[ & X = 1= C— E IO dil TL =~ IV,
wrrafTrmrrms
Therefore
1 7 N 1 1 ~ an -
Al 1= Il =g forall » = i
ldix,,x,.=licl=¢e forall n>=nN,
It follows that
[ - Y I
T L A A T 7 IL F A,
- 3 RTFRS "

T

Conversely, suppose that | d{x,,%,.,, 3 =0 as n— oz, For given ¢ € € with 0 < ¢
b v N nTm b

there exists a real number & = &, such that for z £ €

e

—_— =
= = =

1 1
Tl
£ =

For this &, there is a natural number ¥ such that:

Theorem "?: Let {¥, d}be a complete complex valued metric space and let the mappings

m, x

5,T: ¥ — X satisfy:

rra'l'rx Sx-\la'lr!I T\I\I
T e Tyt S T e gy SR e
L&l\_JiB Fi JVJJ Y fl.-l\_.L.J Jl o e S
1+dixy)
for all =, v £% , where A,z are nonnegative reals with 2 + z < I. Then 5,T have a

unique common ﬁxed point.

Proof: Let x; be an arbitrary point in X and define
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has a unique

1
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Then
i. Then T has a unique
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ibe a complete complex valued metric space and

are nonnegative reals with
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., i are nonnegative reals with
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satisfy:
X,V E

By Corollary (5.1.5) we obtain

=
.
H

1
= X
HF.

The result then follows from the fact that

fixed point.
Corollary
for all
fixed point.
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then the system of integral equations (1) and (2) have a unique common solution.

X by
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A oA

: Define 5, T:

Proof

Then
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==

and

It is easily seen that

..1,
vy | Eey
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v | e

u.m, =

. By Theorem (5.1. 4), the Urysohn integral Eqs. (1) and (2) have a

unique common solution.
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Thus for 4 =853, 5 =0, n
unique fixed point, which is the unique solution of the integral equation:
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Proposition:

1. A G-metric space {X,&}is G-complete if and only if (X, .}
space. Here we start our work with the following theorem

2. Let{X,Gibea

»=-‘

G-metric space, then the following are equivalent.

(i)x,1s G-convergent to x.

1) i PO 1 am _n e
(11) ix, ., X ,X) #u,aSn — oo,

70 e 3 PNy oo
(i) Gi{x,, x,x} = Q,asn = 0

. - Y
(iv) Glx,, x,.x}—=0asmn—=o

3. If{ X, & 3is aG-metric space, then the following are equivalent.
(i) The sequence{x,, jis G-Cauchy.

, there exists N € & such that G{x,,

(i1) For every >0

38, all conditions of Corollary are satisfied and so T has a

is a complete metric




4. Let {X, 53, {x', 5"} be two G-metric spaces. Then a function #: ¥ — X" is G-continuous

at a point ¥ € X if and only if it is & sequentially continuous at x; that is, whenever {x,,)
is G-convergent to x, { f{x ) Jis G-convergent to f{x,,).

5. Let {X,5G ) be a G-metric space, then the function G{x,¥, z} is jointly continuous in all
three of its variables.

£
i

6. Every G-metric space {X. G} will define a metric space { X, d.} by

e B X (1)

Note that if (¥, 5}is a symmetric G-metric space, then

-

deix,v) = 2G{x, v, vl v,y €X (ii)

LAl

However, if {X, G}is not symmetric, then it holds by the G-metric properties that
%G{x_. V.Vi=dpix,vi = 36{x v vV, vEX (i)
and that in general these inequalities cannot be improved.

4.1 Conclusion

In this study the researcher introduced study complex valued metric spaces and
established some fixed point results for mappings satisfying a rational inequality. The
idea of complex valued metric spaces can be exploited to define complex valued normed
spaces and complex valued Hilbert spaces; additionally, it offers numerous research
activities in mathematical analysis, our results complement several significant fixed point
theorems of G-metric and extendedb-metricspaces in the frame of crisp mappings. We
hope that our presented idea herein will be a source of motivation for other researchers to
extend and improve these results suitable for their applications.

List of Symbols
Symbols
max Maximum
fdp Form of functional Dynamic
pregrcemimity
sup Supermom
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ciRg Comman limit in the range of g property

Erks Minimum
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wrt Sobolev space

Lebesgue on the real line

a.e Almost every where
Dist Distance

Inf Infimum

PSc Polaissmale condition

Lebesgue space

ess Essential

L: Hilbert space
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Re Real
Im Imaginary
ext Extend
W2 Sobolev space
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|
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Hilbert space
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