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Abstract
We characterize the O(N)-equivariant vortex solution for Ginzburg-Landau type equations in the N-
dimensional for Euclidean space and we prove its local energy minimality for the corresponding energy
functional. We concluded some results on the equivariant in estimate dimensions.

1. Introduction:
Adriano Pisante continue the study of energy minimalist property for maps u : R¥ - RMwhich are
entire (smooth) solutions of the system
A+ u(l = [uP=0 (1.1
in dimension N > 3 [22]. The case N = 3 has been extensively treated in [18] in the spirit of
theimportant work [19] concerning the case N = 2 which is the truly relevant one in the studyof vortices
in Ginsburg-Landau theory of superconductivity (see e.g. [3,20] and referencestherein).
The system (1.1) is naturally associated to the energy functional
E(v®) [, (1714501 - v)2)(12)
defined forv € X := H, (RY;RY) n L)€ (RN; RV)and a bounded open set @ < RN, Indeed,ifu €
Xis a critical point of E(, Q)for every Q then u is a weak solution of (1.1) and thus aclassical solution
according to the standard regularity theory for elliptic equations. In addition,any weak solution u €X of
(1.1) satisfies the natural bound |u| > 1 in the entire space, see [10,Proposition 1.9].
A natural “boundary condition” at infinity, namely

[u®)] - las|x|] » 4+ (1.3)




is usually added to rule out solutions with values in a lower dimensional Euclidean space and tosingle
out genuinely N-dimensional solutions of (1.1) with nontrivial topology at infinity.More precisely,
under the assumption (1.3) the map u has a well-defined topological degreeat infinity given by
dege, u:= deg (M,E)BR)
|ul
whenever R is large enough, and we are interested in solutions satisfying degoo u = 0.

A special symmetric solution U to (1.1) has been constructed in [1] and [13] in the form

X

U == £(xD), (14)

for a unique function fvanishing at zero and increasing to one at infinity. Actually, the mapUgiven by
(1.4) is the unique O(N)equivariant solution of (1.1), i.e. U(T x) = T U(x)for anyT € O(N)(see
[13]). Taking into account the obvious invariance properties of (1.1) and (1.2),

infinitely many solutions can be obtained from (1.4) by translations on the domain and orthogonal

transformations on the image. In addition, these solutions satisfy R*"VE (U, Bg) — %E [sN"tasR —

400, s0 that U has infinite energy in RN . It is also easyto check that Uas in (1.4) satisfies |Uy)| =
1+ 0(|x|™®) as |x| » +ooand deg,, U = 1. In [4], H. Brezis has formulated the following very
natural problem:
Is any solution u to (1.1) satisfying (1.3) (possibly with a “good” rate of convergence) anddeg,, u =
11, of the form (1.4) (up to a translation on the domain and an orthogonal transformation on the
image)?
The answer to the previous problem is affirmative when N = 3, see [18], at least under the assumption
[u(x)| = 1+ 0(|x| —2) as |x| - +oo. In higher dimension the answer turns out to benegative in
general. Indeed, following [1] it is possible to look for solutions of (1.1) in the form

u(®) = o (Z) £, (1.5)
for suitable harmonic maps w € C®(SV~1; SVN~1)with constant energy density on SN-1 (thisconstant
being an eigen valus of the Laplace—Beltrami operator on the sphere and the componentsof the maps
being in turn corresponding Eigen functions) and for suitable profile functions f € C2(R, )increasing
from zero to one (depending only on this constant density). At least for N = 8a solution of (1.1) in the
form (1.5) has been constructed in [11] with degree one at infinityfor aharmonic map  different from
the identity.
However, if we add a further assumption on the energy growth at infinity then the previousproblem has

a positive answer. Indeed we have the following characterization of the equivariantvortex solution

(1.4).




Theorem 1.1. Let N > 3 and let u € X be an entire solution of (1.1). The following areequivalent:
(i) usatisfies:[u(x)] — 1as |x| > +oo,degeu = +1and E(u,Bp) = 57— ISV} RN? +
o(R"" ) asR - oo
(ii) up to a translation on the domain and an orthogonal transformation on the image, uisO(N)-
equivariant, i.e., w = Uas given by (1.4).

The previous characterization of the equivariant solution relies on the division trick introduced in [19]

and a suitable improvement of the integral identity used in [18] in the caseN = 3. As a consequence,

the result in [18] extends to every dimension but no precise behavior of thesolution at infinity is needed
in the proof except its energy growth at infinity. Note that, theassumptions on the modulus and the
degree are only used to infer that u vanish at some point,which readily gives the translation parameter
in the final formula.

In the three dimensional situation a more precise characterization of (1.4) was given in [18]in terms of

local energy minimalist according to the following general definition.

Definition1.2. A map u € X := H.(RY;RV) n L} .(R; RV) is a local minimizer of £(-) if

E(w,2) < E(w,02)(1.6)
for any bounded open set 2 < RVand for every v € Xsatisfying v — u € Hg (2; RV).Obviously
local minimizers are smooth entire solutions of (1.1) but it is not clear that for each N > 3no constant
local minimizers do exist or if the solutions obtained from (1.4) are locally minimizing. The main goal
of this paper is to discuss local minimalists in the sense of the definition above for the solutions given
by (1.4) in any dimension N > 3. Following ideas introduced in [18] in the three dimensional case,
first we show existence of a no constant local minimizersu vanishing at the origin and satisfying the
correct energygrowth at infinity (see Theorem 3.4 for the precise statement) and then, arguing as in the
proofof Theorem 1.1 we show its symmetry, i.e. we show that uis given by (1.4).

The existence of a no constant local minimizes of E (+)is ultimately related to the minimalityand

uniqueness property of uy,(x) = |ji—lfor the Dirichlet integral on the unit ball among mapsin

H}, (RN; S¥=1), which makes a strong connection of our problem with the theory of minimizing
harmonic maps. These two properties of uoo are well known for N = 3 (see [5]) and forN > 7 (see
[14] and [2] respectively), see also [22]. Some years later a striking simple proof of the
minimality.property of uco was given in [15] for any N > 3 and then uniqueness follows

The construction of a nonconstant local minimizers relies indeed on the analysis of the vorticityset for

solutions uyto




Au+2u(l—-|ul =0 inB,,

1.
u=1Id (maBl,/1 >0.C3

® {

which are absolute minimizers of the Ginzburg-Landau functional Ej(u,B;)on H}; (By;RM)

where
, 1 2
Ey(u,0):= f e, (Wdx with e,l(u):EWul2 +Z(1 — |ul?)?
)

We will show that uy - ue, in H' (B;RY)asA - oo, so that the zeros of w;will tend to
the origin. Thus, up to translations, we will obtain a locally minimizing solution to (1.1) as alimit of

uy, (x/Ay)for some sequence 4, — +oo. In addition, the correct energy bound, namely

E(uw Bg) ~~=2 |SN-LRN=2 for all R >0, will follow from the explicit boundary condition
2N-2

in (1.7) which gives the bound E;(uy, B;) < %E |S¥~1| and the following celebrated monotonicity
formula proved in [17].
Lemma 1.3 (Monotonicity formula). Assume thatu : 2 — RY is a smooth solution of the systemu +

22u(1 — [u]?) = Oinsome openset @ € RNand A > 0. Then,

1 1 1 o
RN-2 Ex(u, Br(xo)) = rN-2 Ex(u, B-(x0)) + fBR(xo)\Br(xo) [x=x0 |8)x—x,|
2 R 1
+?fr tN_—Zth(xo)(l - |u|2)2 dx dt, (18)

forany xg € Qandany 0 < r <R < dist(x,, 002).

As already outlined above, once we have a local energy minimizer vanishing at the origin andwith the
correct bound on the energy at infinity, we can argue as in the proof of Theorem 1.1 andwe obtain the
main result of the paper.

Corollaryl.4. [22]: Let N = 3 + ¢, ¢ € Nand let U be the solution of (1.1) given by (1.4). Then Uis a
local minimizer of the energy E according to Definition 1.2. In particular, U is stable and the

followinginequality holds for any bounded open setQ < R3*¢and for any ¢ € Cg°(2; R3*€),
2
[ + QUi =Dl P+ 210 P dx 0 19)

The stability inequality was already known. Indeed, in [13] a direct stability analysis for thelinearized
operator at Uwas performed in any dimensionN =3 +¢,¢ €N, in the same spirit of the
twodimensional result in [9], using block diagonalization and Perron—Frobenius type arguments.Here,
instead, inequality (1.9) is obtained as a straightforward consequence of a much deeperproperty of U,
namely the local energy minimality property given in Definition 1.2, with respectto arbitrarily large

(but compactly supported) perturbation.

[ =




Finally, note that both Theorem 1.1 and Corollary 1.4 also apply to the case N = 3, which
was essentially covered in [18]. Here, however, the proofs are much simpler and do not rely neither on
the deep concentration-compactness and quantization results in [17,16], nor on a preciseasymptotic
analysis at infinity inspired to the one for harmonic maps at isolated singularitiesgiven in [21], which
was an important ingredient in [18].
The plan of the paper is the following. In Section 2 we review the properties of the equivariantsolution
(1.4) and we prove Theorem 1.1. In Section 3 we study minimizing solutions(P,), weprove Theorem
3.4 and the main result of the paper.
2. A characterization of the EquivariantSolution:
In this section first we collect some preliminary results about the equivariant entire solution (1.4) and
then we prove its characterization in terms of topological degree and asymptoticgrowth rate of the
energy at infinity.
The existence and uniqueness statement and the qualitative study of the profile function fin (1.4) are
essentially contained in [1,12,13]. In the following lemma we stress the asymptoticbehaviour at
infinity. The proof is exactly the same as in [18] and will be omitted
Lemma 2.1. There is a unique solutionf € C%([0, +)) of
{f”+2+sf S fHfA- =0
£(0) = and  f(4o0) = 1.
In addition,0 < f (r) < 1foreachr > 0, f' (0) > 0,f is strictly increasing
RYf"(R)|+Rf'(RIN-1-R*(1—F (R)})| =0(1) as R - +oo, (2.2)

@.1)

and

Rsz ( (f)*+ 1+r2@)rN‘3dr—>%EasR—>+oo. (2.3)
A straightforward consequence of the previous lemma is the following result.

Proposition 2.2. Let x o € RN and T € O(N). Consider the function f : [0,+0) — [0, 1)givenby

Lemma 2.1 and define

T(x — xo)
Tx—xo

Then w is a smooth solution of (1.1). In addition, 0 < |w(x)| < 1 for each x

w(x):=

flx—x).

# Xo, W satisfies |[w(x)| = 1+ 0(|x|™)as |x| » oo,deg, w =det T = +land

2
1 a-lwr) |H? 1N-1
limps e =7 szR(x)< IVw(x)[? + %) x 32— |sh124)




Proof. As in [1] and [13], w is smooth and it is a classical solution of (1.1) and clearly

[w(x)| = 1as|x| - oo,degow = det T. Finally, a simple calculation yield

(N D (f'(x - x9))°

[x — xo|2

22
A-we ) 1
4

1
S ITWeOl + =5 (FG-x) +

_If(lx—02)|?
+(1 |f(|x4 x0/%)| 2.5)

whence (2.4) follows easily from (2.3).
Remark 2.3. Note that, in view of (2.2) and (2.5), the function w(x)above also satisfies thecondition

a 2y2
§|l7w(x)|2 + %— Nzl|xl|2 + o(|x|™%) as |x| > oofor any xo € RN, whenceE(w, Bg) =

S|V + RY2) asR - o0,
The main ingredient in the proof of Theorem 1.1 is given by the following auxiliary resultwhich is of
independent interest and will be used also in the next section.

Proposition 2.4 .Let u € C2(RY;RY)an entire solution of (1.1) and suppose thatu(0) = Oand

E(u,Bp) < lu|SN 1lfor each R > 0. Then, there exists T € O(N)such thatu(x) = T U(x),

where Uis given by (1.4).
Proof. First we apply the division trick of [19] to prove that u has the form (1.5) with the
functionf as in Lemma 2.1. Then a simple argument calculating the energy at infinity willgive the

conclusion.Let f € C2([0,))given by Lemma 2.1 and define

_u()
v00:= 25 26)

The following lemma gives the basic properties of the function v that we need in the sequel.

Lemma 2.5. Let vas defined in (2.6). Then v € C*(RN \ {0}; RY),

vy,(0)

—_pX = -1 =
v(x) =B o + 0(1) and V,(x) V( P I) + o(|x|™1),where B := 70 2.7
aslx| » 0and finally
1 1N -
Jim == N 5 E(v,Bg) < ——|S” 4,
) 1 -lv?
limpecs [ o _ =2 ) gy = 2.8)

Proof. Since u is smooth the same holds for v outside the origin and (2.7) follows easily from Taylor

expansion of u near the origin. In order to prove (2.8) is suffices to show that




il 2 _ 2
f—(l 4'”' ) dx = 0RY-?) = f—(l 4|u| ) ix,
B Bgr

and

] 1 5 1 1 >
lim —— f |Vv|“dx llm N 2N 2 JEIVuI dx,
Bp Br
as R — oo, where the last limit exists because of the monotonicity formula (1.8). Indeed, (2.8)follows
easily from the two equalities above combining the definition of E, the energy growth ofu at infinity
and Young’s inequality. To prove the first statement above, it is enough to note that bydefinition
[1—1|v|?| € f72(1—f% +|1—|ul*|)when |x| = 1. Thus, the claim on the potential partof the

energy follows easily from Young’s inequality and the corresponding property for u (thelatter being a

simple consequence of the monotonicity formula exactly as in
thatf (|x]) = 1 + 0(|x|™®) and f' (|x|) = o(|x|%)infinity. Since (2.2) yields
2
f\“ [ @
W|? = —|W|? + ul? ———ul*=(1+o(1))|Vu|?* + (|x]2
IIfZIIIIf f3ar|| (1 +o(D)IVul* + (1x173)

as |x| = oo, the conclusion follows by integration and straightforward manipulations.

As usolves (1.1) and fsolves (2.1), simple computations lead to

X N-1

20 (1= [v]?) = —2 L% gy - N2
Av.fv(1—|v|*) = Zflxl'vv P (2.9)
3-NW _ _x
On the other hand, as >~ - = e
A sy N-218v ( Lo 1 v 617)
T Tl =t s

F2u(1 + |v|2)'r3—Na_V= ((1+ |v|2)> (2 f'f " 2f2 )

ar 4 | N=35 W] | V-2
x4+ v?)?
_dw<|x|N_2f2 .
N-1 v N—-1 x
—W U.T3_Na=diU(T| IN( |V|2)>

Thus, multiplying Eq. (2.9) by 73~V

2iN-2 1\ (A-WPP\[. ff  2f
(|x|N-1 T |x|N-3> i < 4 )(2 v |x|N-2)

a . SRt .
0—:and taking the previous identities into account yields

av
0<Gx);= ar




= div @(x),(2.10)
Where

1 v % 1+ |v|»? =4l %z

X
10)) . 2 ] 2 1 a 74
(x);= IVuI V2 T s Voo +|x|N_2f 4 > [T |N( [v]*).

When integrating (2.10) over an annulus, the inner boundary integral is controlled by the
following lemma.

Corollary 2.6.[22]. For each N =3 + ¢,& € Nwe have|, 2

=5 () - —dH2+‘€

|52+£|a56 -

0.
Proof. By definition of ®we have

f D(x) P ldHZJ“g

|x|=6

v
ar

2) 2 (1-pf?)? | 2o (1-P?)

|x|3+£—3 4 2 |x|2+€

dH?*e @.11)

— L (Ligyul2 =
_f|x|:5 [|x|3+s—3(zlvu|

Taking (2.7) into account, as [x| — 0 we have

x\[|? v Bx|?
Vul* = |V{B—|| +0(xI™?), ——==0(x""), 1-v =u+0(1)
|x] or |x[?
Consequently
f o). ﬁ dHN
|xj=6
x 2 2+ ¢|x|* — |Bx|? Y )
f [lxlez le | +—2 —|x|4+5 + o(|x|7%7%)| dH?*¢
{lx|=6}
11 x |2 2+¢|Bx|*—|Bx|? A "
|x|=1
As§ - 0. 2.12)

Since a direct computation gives

[

X
() -
|x|
|x|=1

for any constant matrix A € R3*€*3%¢_the conclusion of the lemma follows.

2 2+zs|Ax|2
2 |x|4+£

) anesee=o




Integrating (2.10) on {§ < |x| < R}and taking Lemma 2.6 into account, as § — 0 we obtain

2+e

= 152521+ g(R) [ s () = dHP(2.13)

whereg(R) = fBR G(x) dx and

v
er 2+e _ 2+
f@‘b(x) dH J- [|x|€< F > dH
|x|=6
+], 20 | 24y ey L gpaesia g
|x|=R |x|3+e—3f 4 2 v e (2.14)

Multiplying (2.13) byR, integrating from 0 to Rand dividing by R€ we have

Fer ey f a1
Bg
S BB 4o, 2 g 2.15)
Letting R — ooand taking Lemma 2.5 into account we infer
1 ! |
%1_1120 Rive f g(R)REdr+R1+E f|0r dx | =0,

whence |v| = 1and % = 0, because g(R) is an increasing function. As a conseqence of (2.6) we
see that |u(x)| = f (|x|)and it is a radial function. In addition, v(x) = ® (ﬁ)for some
smoothharmonic map w € C®(S2*¢; S27€)(harmonic being the limit of u at infinity, see [17]),
i.e.(1.5) holds with the profile function f given by Lemma 2.1.

Clearly Au(x) - u(x) = —|u(x)|*?(1 - [u@®)|?) = =f2(xDA = f2(|x|)), so it is a radial
function. On the other hand (1.5) implies

L
[x[?

2+¢ f?

2+e
Au.u=<f”w+|x—|f’ A0w> of =ff"+ ] ff'+| |2A0ww

D

where 0 is the Laplace-Beltrami operator on.S%*¢ Since o has values on the sphere and Aywand ware
parallel, from the previous formula we conclude that Ajw - wis a radial unctionin R3*¢, therefore

—Agw = Awon S?*¢ for some A 0,i.e.wis an eigenharmonic map andhence |A0(u|2 =

A on §?*¢(here 7, is the tangential gradient on the sphere). Finally, since|l7w | = — and (1.5)




holds, the assumption on the asymptotic energy bound of u togetherwith (2.2) easily implies A = 2 +

€. Thus, the components of ware spherical harmonics of degreeone, i.e. they are restrictions to the unit

sphere of entire affine functions in RN and this fact inturn yields v(x) = w==T

X
x| |

pr for some
constant matrix 7. Since v takes values on the spherewe infer 7 €O(N) and in view of (2.6) the proof is
complete.

As a direct consequence of the previous results we have a straightforward proof of Theorem 1.1.

Proof of Theorem 1.1. (i) =(ii) Since u satisfies (1.3) and degou # 0we deduce that
u(x,) = 0 for some x, € R3¢, Thus, without loss of generality we may assume u(0) = 0 upto

translations. Then, the monotonicity formula (1.8) and the asymptotic energy growth yieldE (u, Bg) <

%g |sN=1|RN=3 forany R > 0, and the conclusion follows from Proposition 2.4.

(i) = (ii) Since u is given by (1.4) the claim follows from Proposition 2.2.
3. Local Minimality of the Equivariant Solution:
A basic ingredient in the construction of a nonconstant local minimizer is the following smallenergy
regularity result taken from [17] (see also [8]).
Corollary 3.1. [22]. There exist two positive constants g > 0Oand Co > Osuch that for anyA = 1 +
g, & € Nandany u € C? (B,g (%) R3*Esatisfying
Au+ (1 +&)*u(1 + [v|?) = 01in Byr(xo),

. 1
with G Bi4+e(U, Bor(Xo)M0, then

R? SUPBg ) erpe(u) <Cg ﬁ E;L(u, BZR(XO)).(3.1)
We will also make use of the following boundary version of Lemma 3.1 (see [6,7]).
Corollary 3.2.[22].Let g : dB; — S?*¢be a smooth map. There exist two positive constants 1, >
0and C; > Osuch that foranyA=1+4¢e€N,0 < R < n1/2,%, € B,and any u €C,(B; N
Byr(X); R3*®)satisfying u= g on dB; N Byg(Xg)and
Au+2%u(1 + [ul?) = 0in B, (xo)

. 1
With WE“_S(U, 81 n BZR(XO) < T]l,then

1
R SUPB, gy €16 (W) < Cr G Buee(WB1 N Br(x0)).  (32)
The key result of this section is the following proposition on the behaviour of minimizers

in the minimization problems (Pj,¢)defined in (1.7). This fact is a weaker extension to

higherdimension of the corresponding one in [18].




Corollary3.3.[22]. Let N = 3 + ¢,£ € Nand B; = {x € R3*®s.t.|x| < 1}. ForeachA = 1 + elet
Up4e € H (By; R3*€)be a global minimizer of Eq4¢(:, B;) over Hiy 1 (By; R3*€). Then uy,¢(x) -
X

(%) := min HY(By; R3*)as (1 +€) - oo. In addition,uy,¢(X) = ug(X)in . (B; \{0})and for

any 8 € (0,1),disty ({luise] < 6},{0}) = 0(Das (1 +¢) > +oowhere distydenotes the
Hausdorff distance.

Proof. Let us consider an arbitrary sequence (1+¢), — 4o, and for every n € Nlet u, €
H'(By; R3*$)be a global minimizer of E(14¢), (» By)under the boundary condition uy|sg, = x(which
clearly exists by standard direct method). It is well known that uysatisfies |u,| < 1 andu, € c?B; |)
for every n € Nby a simple truncation argument and elliptic regularity respectively.

Stepl.We claim that u,(X) = Uy (x):= x/|x|strongly in HY(B ;R3*%)Since the map

Ugisadmissible, one has

gl
2Jg,

foreveryn € N. (3.3)

12+¢

1
|Auy[* < +E(146)n (Un, By) < E(1iyn(un, 31)51;31 |Auy, |2 =§1_+s|§2+€|

As a consequence, {uy} is bounded in H'(By; R3*%)and up to a subsequence, u, - u, in weakly in
HY(By; R3*¢)for some S?*Evalued map usatisfying u,| dB; = x.By[15,14] and [2] the map uco is the

unique minimizer of u € H' (B;; S®*9) w B;|Vu|? under the boundary condition udB; = x.. In

particular, fBl [Vu,|? = f31 |Vt |*which, combined with (3.3), yields

1 1 1
—f |Aup|? ﬂ—f |Au,|? == | |Augl?asn - +o
2 B, 2 B, 2 B,

Thereforeu, = ugand u, = ugstrongly in H:(B;; RV)
Step2.Let 6 € (0, 1)be fixed. We now prove that the family of compact sets V,, := {|u,| < &} —
{0}in the Hausdorff sense. It suffices to prove for any given 0 < p <1,V c B, for every nlarge

enough. Since uw is smooth outside the origin, we can find 0 < o < min(p/8,1,/4)such that

c“sf |Au,|* < min (en,); = forevery x €B;\B,,
By N Byg(x)

where 77, and 7 jare given by Lemma 3.1 and Lemma 3.2 respectively. From the strong convergenceof
un to Uy, in HY, we infer that

ﬁE;\n(un, B4G(X)) < forevery x € B; \ B, (3.4)
whenever n > N; for some integer N; independent of x. Next consider a finite family of points
{xj }je; € By \ B, satisfying B,,(x;) C By if x; € B; and




B,\B, c U By(x;) |U U Byo(x;) |
Xj€By Xj€0B;

In view of (3.4), for each j € ] we can apply Lemma 3.1 in B, (x;) if x; € By and Lemma 3.2
in By N Byg (%) if x; € 3By to deduce

Supg, \B, e(1+e), (u,) < Co *oreveryn = Ny,
for some constant € = max{Cy, C;} independent of n. By Ascoli Theorem the sequence {u,}is
compact in C°(By \ By), thus u, = s, and |u,| — 1 uniformly in B; \ B, . In particular|u,| >
5inB;\ B,whenever n is large enough, i.e. V,, © B, for every n sufficiently large.
The main step in our study of local minimality of (1.4) consists in the following result giving
the existence of nonconstant local minimizers.
Corollary 3.4.[22]. For each N = 3 + ¢, £ € Nthere exists a smooth nonconstant solution u: R3*¢ -
R3*€of (1.1)which is a local minimizer of E(*). In addition, u(0) = 0 and R>"NE(u, Bg) <
C o ——|S?*¢|forR > 0.

21+¢
Proof.Consider a sequence (1 + ¢€),, = +o0and let u,be a minimizer of

E(4ey, (. By)onH[g(By; R3¥*€)Sinceu,, € C? (By; R¥**)and Proposition 3.3 holds, by elementary
degree theory we may finda,, € By /,such thata, = 0 for every nsufficiently large and a,, > 0 asn -
0o,

Setting R,: = (14 &), (1 — |ay|), Ry, = +ooasn = +oo, and we define forx € By , i, (x) :=

U (2 + €)7" x ay)s0 that u,clearly satisfies

Aﬁn + |an(1 - |ﬂn|2) in BRn

%,(0) = 0and |&,| < 1forevery n. Moreover taking (3.3) and the strong convergence of u,inH!into
account, it is easy to see that

limsup RZ™ E (i, Bg, )— llm ((1+g)n_1 R E (1 -1Rn (an)

n-+o

12+e

2 1+e |
Then we infer from standard elliptic regularity that, up to a subsequence, U, — uin
CZ. (R3*% R3*€)for some map u : R3*¢ — R3*solving Au + u(1 — |u,|?) = 0 in R¥*and
satisfyingu(0) = 0. Next we deduce from (3.5), the monotonicity formula (1.8) and the

S@+en|

smoothconvergence of ii,to u, that supgsoR™1 "¢ E(u,Bg) < - 12t |S(2+5)"| Finally, the local

minimalityof U, easily follows from the minimality of U, (i.e. of un) and the convergence of U, to u
inclzoc (R3+E; R3+s)_

Proof of Corollary1.4. Let u be the local minimizer given by Theorem 3.4. Since u(0) = 0 anduhas
the correct energy bound at infinity we can apply Proposition 2.4 to conclude that up toisometriesu =
Uas given by (1.4), i.e. the equivariant solution Uis locally energy minimizing.Finally, the stability
inequality (1.9) is a straightforward consequence of the energy minimalityby computing the second
variation.
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