Sobolev embeddings of sharp higher order

Dr.lIsam Eldin Ishag Idris University of Kordofan, College of Edu-
cation

Sobolev embeddings of sharp higher order
Dr.Isam Eldin Ishag Idris —University of Kordofan, College of
Education
Abstract:
This study aims to extend the sharp version of the Sobolev
embedding theorem,by using
a natural extension of the L(2 — €, 1 — €) spaces with a new form
of the Po6lya-Szegd symmetrization principle, it follows the
descriptive method, and the study found that
Y,4+e(o0,1 + €) is not larger than any r.s. space X(Q) such that
I/VO(HE’Y) (Q) < X(Q).this result extends, complements, simplifies
and sharpens all the recent results.
Keywords: Embedding, Sobolev rearrangement
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1.Introduction
We show that I/I/O(He‘z_e) (Q2) denote the usual Sobolev spaces of
functions ¢ defined on an open domain Q ¢ RZ+€) such that
@ and all its distributional derivatives D%, |a| < 1 + €, are zero
at 0Q, and, moreover, such that |[D%p| € LF(Q), |a| = 1 + €. The
classical Sobolev embedding theorem asserts that if (0 an open
domain in R?*€) then,
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WO(“E'Z‘E)'(Q) cL0-9(Q),3 —e?—e-2=0,1>¢
(1.1)

The norms of the embeddmg blow up as 2 — € - Z= . In fact, if
€ = 0, we formally have € = o and (1.1) is false. Thus, in the
limiting case , it is necessary to go outside the L~ scale to find
the correct target spaces.Indeed, it was shown by ([17] Trudinger,
(1967) .

for e =0, and ([19] Strichartz ,1971/72). for € > 0 (cf. also
([15] Cwikel and Pustylnik ,1998), if |Q| < oo, we have

2+€
Q) € Lo (@), (12)
=)
where CD(2+6)(X) is a Young’s function such that Cb(z+6)(x) ~
1+€
o)
are sharp. The sharp form of (1.1) is provided by the O’Neil-
Stein version of the Sobolev embedding theorem (cf. [18]

0"Neil,1963).
which requires the use of the L(2 — €,1 — €) spaces :

W @) c L2 g 1- (@), et —e—2=0,1

(1+E

W,

for large x. It is also known that neither (1.1) nor (1.2)

>e>0.(L3)
Again (1.3) fails when € = 0. Motivated in part by (1.3), ([14]
Hansson, (1979)

and ([10] Brézis-Wainger,1980) improved on (1.2) and obtained

in the limiting case e = 0,

1+62+6

W( 1+6) (.Q) (- H(2+E) (.Q) (14)

where, for € < 0,H(,_,,(Q) is the Lorentz space defined by
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Ho-o(@) = { ¢:ll0lln,_o@

M e +e) Sl
= ] 1+ Sl
o \1+In— e

1+e€

The result is optimal amoung all r.i. spaces; this was proved in
([14] Hansson,1979).

for Riesz potentials and in ([15] Cwikel and Pustylnik ,1998) for
Sobolev spaces themselves.

In particular,in ([15] Cwikel and Pustylnik ,1998) it is shown
that, for any . i. spaces X (),

2+€

v%(”e‘l_*) OESIOEY

)(Q) c X(Q). (1.5)

It is customary to treat (1.3) and (1.4) (or (1.2)) as separate
problems with their corresponding separate proofs. We shall
show extending the methods developed in ([11] Bastero, Milman
and Ruiz) for the case € = 0, a unified method to prove the
Sobolev embedding theorem and the corresponding sharp
borderline cases. In fact, for the borderline cases, we actually
improve on the classical results since our target spaces are

rearrangement invariant sets which are strictly contained in the

2+€
1+e€

optimal spaces described above.

The two main ingredients of our method are : (a) the use of a
very natural extension of the L(2 —¢€,1—€) spaces recently
proposed in ([11] Bastero, Milman and Ruiz), and (b) the use of a
newversion of the Pélya-Szegd symmetrization principle that is
valid for higher order derivatives. The new method can be easily
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generalized to give sharp results in the context of Sobolev spaces
based on general rearrangement invariant spaces. To better
explain the ingredients of the proof we start by recalling the
L(0,1 — €) spaces recently introduced in ([11] Bastero, Milman
and Ruiz) in connection with the case € = 0 of (1.3). We observe
that if we formally let2 —e — 2= in (1.3), and disregard the

blow up constants, one is naturally led to consider the space
L(oo, i—:) However, it is well known, and easy to see,that with
the usual definition L(co,1 —€) = {0}. On the other hand,
imitating ([4] Bennett-DeVore-Sharpley,1981), we modify the
definition of the L(2 — €,1 — €) spaces as follows. Let1 > € >
0,1 < € < ©,°C, let Q be a domain in R?*9 and let M(Q) be
the set of measurable functions on (.

We let L2 —€1-€)(Q) = {p € M(Q): [9llz-e1-¢) < ),
with

”(,0 ”L(Z—e,l—e)

= {fom [(40**(1 —€)

1 1-€ (;)
— 9 (1-9)(1 - E><;>]< >d<1-e>} |

1-€
1>€>0,0>€>o we use the usual modifications when
€ = o,

These spaces make sense (and are not trivial) for 1 > € > 00,1 <
€ < . Moreover, the new spaces actually coincide with the
classical L(2 — €,1 — €) spaces whenever
1>e>,,1<e<oIn fact for functions in the classical

L(2 —€,1 — €) spaces we have
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{f [CREERECER) Rl ‘““)}
0

. { J Jera-a)
=)

- (=
—e)(ﬁ)] ed(l_e)}l 1>e>0,1<€< oo

1-€
The second 1dea underlying our method is a suitable extension of
the Polya-Szegd symmetrization principle for higher order
derivatives. It is easy to see that the standard form of this
principle, comparing the first derivatives of a function ¢(x) and
its non increasing rearrangement @*(1—€), can not be

generalized, even to second derivatives, because there are
do*
d(1-¢)
differentiable, even in the sense of distributions. For example,the

1S not

infinitely many smooth functions ¢(x) such that

function ¢@(x) =1+sinx,0<x <3, has rearrangement
p'(1—¢)= (1 + cos %))((o’n)(l —€)+ (1+sin(1 -

*

d
d(1-€)

E)))([n3_n)(1 — €), thus has a “‘jump’’ at the point 1 — € =
"2

m (a more detailed discussion devoted to this topic can be found
in ([1] Cianchi, 2000).Nevertheless, we shall show that a suitable
modification of Pdlya-Szegd holds for higher order
derivatives.To state our result, we recall an inequality for radial
spherically decreasing rearrangements from ([11] Bastero,
Milman and Ruiz)and ([3] Alvino, Trombetti and Lions,1989).
Suppose that ¢ is a smooth function such that ¢ and |V¢| vanish
at inifinity and let ¢ denote its radial spherically decreasing
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symmetric rearrangement. Then, there exists a universal constant
Y(2+¢) such that

(1- 0@ (e (1) - p*(1-©)
—€). (1.6)

This leads to
-1
a-aEdp a-a-ga-o)| svllv ¢
Y

€ Cy(RE9) (1.7)
for any r.i. space Y satisfying the (P) condition (cf.Definition
2.1below). We will show (cf Theorem 3.4 below) that, under
mild conditions on a r.i. norm

Y(Q),0<e<1,
(1+€) *k *
|a-oG ) a-a-¢a-e)
Y(Q)
S [|[vA*9g|. ¥ ¢ € 2 (RE). (1.8)

Y(Q)
We prove that conditions of this type are optimal by means of
reformulating a necessary condition for Sobolev emeddings
derived in ([6] Edmunds,Kerman and Pick,2000).

(cf.Theorem (3.6). More precisely we show that if X(Q) is a ..
space such that

Illxa < [V0+9p|, ) and 10] < oo, then

ol < c@ @ - 0 g1 - o
—0*(1 . (1.9)
Y

We are now ready to give our proof of the following sharp form
of the Sobolev embedding theorem.
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Theorem 1.1 Let () be an open domain in RZE) lete > —2,¢ >
0,1 >€e>0, with the convention that € = oo if ﬁ =0 (e

€ = oo when = 2X¢) Then
2+€

Lrelte
WO( oo @) cL(1—-¢2-€e)(Q), (110)
with
l@llL-e2-¢) < C||V(1+6)§0||L(1_6)‘V ¢ € (' (). (1.11)

Moreover, the result is optimal : if |Q] < oo, then for any r.1.

space X(Q),1>e>0 ,WO(HE'Z_E)(Q) cX(Q) =
L fe . o= €) c X@)
—-e(e+2)’ ]

Proof. As a consequence of Example 4.1it follows that (1.8)
holds with Y = L3791 > € > 0. Therefore (1.10) and (1.11)
follow from the following trivial computation with indices,

=,
(—6(6 +2)° 6)
~lp:(p -0 -pra-9)a-ol=d)

eﬂ*@}1>e>0,

with 0] e =|| 0" (l—-€e)—¢*(1-¢€))1 -
” ”L<—‘:(e+22)'2_6) ( ( ) ( ))(
6)(_(21:))

Le-¢
That this condition is optimal now follows directly from the
previous calculation and (1.9).
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To extend Theorem 1.1 to more general r. i. spaces, it is therefore
natural to turn the left hand side of (1.8) into a definition. Given
r.i. space Y (Q), let

Hase (e (1 +€)@)
={pa-0E e a-a-pa-9)
eym)},

1Py s, e (c0,a+0))
‘(1 — E) 2+e )(QO**(]- )
9" (1-9)

Y

The preceding discussion leads to the following generalization of

. (1.12)

Theorem 1.1.
Theorem 1.2. Let Q be an open domain in R?*€), suppose that

€< % Let Y(Q) be a r.i. space satisfying the conditions Q(¢)
(cf. Definition 2.2 below) and (2.1 below).Then

W (Q) € Vg (oo, (1 +€)), (1.13)
and ||<p||Y(2+E)(OO,(1+E)) < ||V(1+E)(p”Y(Q),v 0 € CE(Q).
Moreover, if | <o, and X(Q) is a r.i. space then
W (@) € X(Q) = Yge(oo, (1+€)) € X(Q), and
lo™lx S lelly,,,, (wcas0)
Proof. If Y is a r.i. space satisfying the assumptions of the

theorem then, by Lemma 2.3 and Theorem 3.4 below, (1.8)
holds. This 1s all we need to obtain (1.13). The fact that the
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Y(2+e)(00,(1 + e)) spaces are optimal follows once again from
(1.9).

The last theorem obtains a particularly simple from if the space
Y(2+6)(00,(1+E)) itself is a r.i. space. For example, if Y
satisfies the Q(1 + €) - condition (see Definition 2.2 below), it
follows by Lemma 2.6 that

—(1+€)

(1- e g™ (1 -

”(p ||Y(2+E)(OO,(1+€)) =

Coroallyl.3. Let Q be an open domain in R?*9, let Y(Q) be a
r.i. space satisfying the Q(14+e¢€) - condition .Then
Y24¢)(®, 1+ €) is a . 1. space with norm provided by (1.14) and

. (114
Y

—(1+€)

MOreover, H(l - e)(W)(p*(l —€)

] S ||(p||Y(2+e)(oo,(1+e)) S

”go ||W0(1+e)'y(ﬂ).

Y(2+6)(00,(1 + 6)) is the optimal target space for the Sobolev

VVO(1+6),Y

embedding () c X(Q) among all r.i. spaces. The

quasi-normed space defined by the quasi-norm ”(1 -

-(1+e€)
e)< 2+e )fp*(l —¢€)|| is the optimal target space among the class

Y
of quasi-normed r. 1. spaces ([16] Milman and Pustylnik, 2004).

Remark 1.4. The optimal target spaces for embeddings of
generalized Sobolev  spaces are described in  ([6]
Edmunds,Kerman and Pick,2000).The description obtained in
([6] Edmunds,Kerman and Pick,2000) is indirect and does not
imply the previous Corollary. A version of our Corollary 1.3 (
with stronger assumptions on Y and without a study of optimal
conditions) was claimed much earlier in ([24] Klimov,
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(1970).Unfortunately, the proof indicated there is based on two
incorrect arguments (a higher order Pdlya-Szegd principle as a
mere iteration of first order results, and a theorem on
interpolation of 7. i. spaces that was later shown to be false).

2. Preliminaries

Let € R?*9 be a domain, and let Y = Y(Q) be rearrangement
invariant space. Let 1 + € € N and define the Sobolev spaces

VVO(l'I'E)lY(Q) — {(p: |Da(p| € Y,Da(p VaniSheS on a-Q; |a| S 1 5
€},

where |D% ]| is the length of the vector whose components are

all the derivatives of ¢ of order |a|. WO(HE)’Y(Q) is provided
with the seminorm

ol 07 gy = Ziat-secl D0y Let
_ (%0 _ _ y(2+e) %
Vo= (6x1' o a"(2+e)) Vo = Zi:l ox} and
(%)
AVz g for even (1 + €),

V(1+6) 0= .
1% (A(E)) @ forodd (1+e¢).
We shall usually formulate conditions on r.1i. spaces Y in terms

of the Hardy operators Pop(1 —€) = ifo(l_e) o(1+e)d(1+

1-€
€ Qp(l-e) = [, o(l+e)%e,
Recall that ar.i. space has a representation as a function space
on Y (0,|Q|) such that lolly@) = ”‘P*”y"(o,mn- Moreover, since
the measure space will be always clear from the context it is
convenient to ‘‘drop the hat”” and use the same letter Y to
indicate the different versions of the space Y that we use. We
shall also set our functions equal to zero for x & (). Let
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(0(1+6)g0)(1 €) = ( ) —€,e>—1, and define the
dilation function dy(1+€) by dy(1+¢€) = ||(0(1+E)go)(1—
A, = lloasoe)@ -,

(since (6se0) = (0+09"))
Definition 2.1.We shall say that Y satisfies the (P)-condition if
P:Y(0,00) - Y(0,0) defines a bounded operator (equivalently
Y satisfies the (P)-condition if and only if the upper Boyd index
of Y is less than 1) . In particular, if Y satisfies the (P)-condition
then ||¢**||y is an equivalent norm on Y,

lolly = llo™ly. (2.1)
Likewise we shall say that Y satisfies the (Q) -condition if
Q:Y(0,00) - Y(0,) defines a bounded operator (equivalently
Y satisfies the (Q)-condition if and only if the lower Boyd index
of Y is greater than 0).
In what follows we also need to consider weighted norm
inequalities for Q with power weights. This leads to conditions
on our spaces.
Definition 2.2. Let € > —1, and let Y be ar.i. space. We shall
say that Y satisfies the Q(1 + €)-condition if

Q((l +¢), Y) = 1 (1+¢) ;:)dy (1+E) d(11+6) . (2.2)

Note that if Y satisfies the Q((l + 6)) -condition for some
(14 €) then it satisfies a Q(b)-condition for every b <1 +¢,
including the Q(0) = (Q)-condition.The following known result
(cf. ([8] Stein , 1970, [20] Maz’ya ,1985)) will be useful in what
follows.
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Lemma 2.3. Let Q be an open domain in R?*€), and let Y(Q) be
ar.1. space satisfying the(P) and (Q)-conditions.Then

Aoy = ) 1D°@lh ¥ € @), @3)
|a|=2

holds with constants of equivalence independent of ¢.
Proof. We only need to remark that the arguments in ([8] Stein
1970,[20] Maz'ya ,1985) for L3~ extend to r.i. spaces
satisfying the(P) and (Q)-conditions by a well known result due
to Boyd (cf.[5] Bennett, DeVore and Sharpley,1988).
Example 2.4. In particular if Q1 is an open domain in RZ*¢) 1 >
>, then l -0 * Lol D@y VO €
Cy ().
Lemma 2.5. If Y is a r.i. space satisfying the Q(1+¢€) -
condition, then Q is bounded on the space Y provided with

weight (1 -¢) (%) More precisely,
|- apa-o
Y
(!
~(14¢)
+e)Y)|(1- e)( 24¢ )<p(1 -9 . 24
Y

Proof, Leta = ;—IE We have

02022 piliy - 21443 pilill gu) - juine pilidl a2l - dagiow iy G080 drole dlao m




Hiatham Ahmed M. Soliman- Dr- Ahmed seifeldin

1+e

(1) 1Qp(1 - )| = f( 1461 -
1-€

1+e

= [ pa-en - eyetien
1

_ f m¢(1 —e2)(1-€e)™ (1 + €)% ta-ad(1
1

+ €).
Applying Minkowski’s inequality we obtain
(1 =e)"*Qp(1 = e)lly

< f lo(1 = e)(1 - )|y (1 + )™ a-0d(d
1

+¢€)
” 1 a-1

sjl dy<1+6)(1+6) a-od(1

+e)ll(X-e)olly.
Lemma 2.6. Let Y be a r.i. space satisfying the Q(1 +¢) -

condition, for some € > —1. Then, for all measurable functions ¢
with ¢**(c0) =

(1+

||<1—e> wera-o-ga-o)|

(1+e) ”
<||a-etema- )Y
<

+ena-ofE e a-o
-ga-a)| @9

Proof. The first inequality is trivial. To prove the second
inequality note that
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d *% - > (p*(l—E)—(p**(l—e)
ia? (Ua€)=—7"——

fundamental theorem of calculus, we have

p*(l-e)=| (p"A+e) -9 (1+¢)
(1-¢)
= Q™" — @)1 —€).(2.6)
The desired result follows from Lemma 2.5.

Therefore, by  the

d(1+€)
1+€

It is useful to remark here that, for the operator P, the
corresponding weighted norm inequalities for power weights are
automatically true.

Lemma 2.7. Let Y be a r.1. space. Then, for any & > 0

I(1 =)= *P(p)(1 = O)lly < I (1 - )~ *p(1 - €)lly.
Proof. Computing dy (1 + €) for Y = L}, and Y = L*,we find, by
interpolation, that for any 7. i. space Ydy (1 + €) = max{1,1 + ¢}
(cf.[S] Bennett, DeVore and Sharpley, 1988 for the details). Since

P is a positive operator we may suppose that ¢ > 0. Now,
(1= Pp(1-€) == p1+€) (1- ) “d(1 +
e)=[ p(1-e) (L +e)(1-€) (1 +€) d(1 +e).Thus,

(1 —€e)"*Pop(1-6)lly
1o
sfo dy(1+e)(1+e) da
+a)l[(1-e)%p(1-#)lly

< J 1+ d1l+eld-e) o -6y,
0

as desired.
3.Symmetrization inequalities for higher order Sobolev
spaces
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The main tool for our analysis is the following result from ([11]
Bastero, Milman and Ruiz).

Lemma 3.1. Suppose that Y is a r.i. space satisfying a (P)-
condition. Then for all smooth functions ¢ such that ¢**(c0) =
0,

1-9(p -0~ g1 -0)| <I%ly.G)

Proof. The proof we give is the same as the one given in ([11]
Bastero, Milman and Ruiz) for ¥ = L?~€). However, it is
important for our development to provide the complete details
here. Recall that from Lemma 1 in ([11] Bastero, Milman and
Ruiz) we have the pointwise inequality

-1 K%
(1-0F (e -9 -9 L-0) 5[V (1-e,(32)
where ¢”(x) = (p*(c(2+6) |x|(2+6)), denotes the radial spherically

symmetrically decreasing rearrangement of ¢, C(,4¢) =measure
of the unit ball.Recall also that the Polya-Szegd symmetrization
principle holds for r.i. spaces (cf[12] Fournier, 1987, [23]
Klimov,1969)

1], 5 170l (33)
Applying the Y norm to (3.2), and using successively the (P)-
condition and (3.3), we obtain the desired result.
Our main result here is the higher order version of Lemma
3.1.The first step of the induction process that leads to higher
order estimates is provided by the next result.
Theorem 3.2. Let Q be a domain in R?*€) and let Y(Q) be a . 1.
space satisfying the (P) and Q(1) conditions. Then for all
smooth functions ¢ such that

¢ (0) = [Vo[™ () =0,
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1-oE 1o —g'1- e))”y < 1Volly. (3.4)

Proof. We shall prove below the elementary estimate

[V|[Ve| < [D?o]. (3.5)
Applying Lemma 3.1 to |Vg| and combining with (3.5), we
obtain

|a-oEwera-e-1wora-e)

1IVeIVelly < [ID?glly.
Therefore combining with (2.3) we get
< llAelly-

|a - oEdwara-o - wora-e)

Combining the previous inequality with Lemma 2.2 we obtain
a-0Ewerra-a =gl

By the generalized Polya-Szegd symmelt/rization principle (3.3)

-

=
Y

(applied to the r.i. norm defined by Y|l =

oGy (1-¢)

) we see that
Y

-1 *k
”(1 — e)(m)|V<p°| (1-¢€)

< llAelly. (3.6)
Combining the last inequality with the pointwise inequality (3.2)
we find

= |a-oEdwgrra-o

Y

|a-a&de a-a-ea-a)

<|la-oE e a-o

5
Inserting the last estimate in (3.6) gives us desired estimate
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|a-oEd e a-a-pa- E))HY < llaglly.

It remains to prove (3.5). Using subindexes to indicate partial
derivatives, we have

(2+¢)

|V'~/}|j Z 1»0 lpl] |V|V¢||

2

1
(2+€) /(2+€) 2\ /2

|\7¢| ). Z"”””

j=1

Therefore, by Cauchy-Schwartz applied to inner sum, we have

2te) @t e+ N1z Je+e N\ T2
1 2 2 2
[VIvy|| = 2 Y ¥i; = ¥
i=1 =1 i=1 ij=1
= [D*Y|.

Remark 3.3. The previous theorem could be considered as a
form of the Podlya-Szegd principle for the Laplacian.A higher
order version of Theorem 3.2 can now be obtained by iteration.
The main problem here is to check that all requirements to
implement the iteration are fulfilled.

Theorem 3.4. Let Q be an open domain in R?*9), let (1 + €) €
N, €< %, and let Y(Q) be a r.i. space satisfying the (P) and

Q(€) -conditions. Then for all smooth functions ¢ such that
[V |™(0) = 0,m = 0,1, ..., €, the following inequality holds

(1+

|-t £y g v'1-a)|
s [V 9|, 37
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Proof. Lemma 3.1 and Theorem 3.2 prove the cases € = 0, and
€ = 1. For the general case we now proceed by finite induction.
Induction turns out to be the same for odd or even numbers
(14 ¢€). Let m be an arbitrary number such that 2 <m <1+
e,m = (14 €) (mod 2). Suppose that (3.7) is true form = 3 +
€. Suppose that g is any function such that ||V(1+6)¢||Y < o, and

let @ =Ay. Applying (3.7) for m=3+¢, we get ||(1-
( s 2)) K% * -2
Oz /(AP (L -€) =M (L-e)[ < IV 2aglly.
Y
Combining with Lemma 2.6 and the definition of V™ gives
—(m-2)
a-at=epyra-a| simyl.  @9)
Y
Consider now the 7. i. space B defined by the norm
(m-2)
Ihlls =1 - 51— )
Y
By computation it is readily seen that dz(14¢€)=dy(1+

-(m-2)

e)(1+e)( 24€ ) Therefore B satisfies the Q(1) -condition.
Moreover, by Lemma 2.3, (2.3) holds in B norm. Consequently
we may now apply theorem 3.2 to derive

Ja-o&dwa-a-wa-a)| s,

(m-2)

= [l - o) cagy 69)

On the other hand,using the property||uv||y S 2||u*v* ||y, which
is valid for any r.1. space Y, we derive
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—-(m-2)

Itls > |- o Fh -0 3

—-(m-2)

— e)(T)h(]_ —

Thus
Y

|a-oBdwa-a-va-a)|

€)

1 —m
25 |a-aEwra-a-va-a)|
Combining the last estimate with (3.8) and (3.9) yields
[a-oEdw a-a-va-a)| st

for any admissible m. It remains to but m = 1 + €.

Example 3.5. Let Q be an open domain in R?*9, and let
0 < —€? + € < 2.Then L?~9(Q) satisfies all the hypotheses of
Theorem 3.4.

Proof. We give the details for the convenience of the reader. By
Hardy’s inequality we see that L3~€)(Q) satisfies the (P) -

1
condition. Moreover since dy(1+¢€) = (1 + e)(z_—e) we see that

for
0<—-€e24+e<2,

Q(1+¢Y) = J- (1+¢) 2+e)(1 + e)( )d(1+:)) < o0

Proving that L~ also satisfies the Q (¢) condition. In particular

note that we may take € = 0. We present the result which states
that: if X(Q) is a il space,
e <, then [y s [[VE*9g| for all @ € CI*€(Q),

Y(Q)’
implies that
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1+€
1 et +aa+oEdeal <ol for al g>
X

0. (3.10)
As a consequence we prove.
Theorem 3.6. Suppose that € < % Q] < oo, and X(Q) is a

r.i. space such that [|¢|lyq) S ||V(1+6)<p|| for all ¢ €

Co’ (Q).Then,
Y(2+6) (00, 1+ E) (.Q.) c X(.Q.), (311)
and moreover there exist a conatant ¢ = c¢(|€|, X) such that

Y(Q)’

lo"llx1an < cll@llyg,yp@ire
Proof. By the fundamental theorem of calculus we have

o (- =, (0"1+e) - g (1 +€) 2=
AN RS B C ) i **(1+
d(1+6) J-(|.Q| ((p**(1+6) 0 (1+ )) d(1+€)

1+€ 1-€)
1 19
|ﬂ| 0

o lxo10p < 1™ Mx,1p

|9
f (p(1+¢)
(

1-¢€)

©*(1+€)d(1 + €).Therefore,

<

d(1+¢)
1+e€

- (1+ e))

|
& o @ (1+e)d(1 +e)llxallx,ap- (3.12)
0

x(o,1aD)
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It remains to estimate the first term in the previous inequality

—-(1+€)
Replacing ¢ by (1 +€) 2+ (9™ (1+€) — ¢"(L+¢€)) in (3.10

we find
1l d(1+e€)
" (1+e)—¢@*(1+¢)
f(l—e)( ) lt+e

((p**(l +e)—-'(1+ E))

Therefore, inserting the last estimate in (3.12), we find

o' (1+e)d(1+

al
[lox “X(OIQI) S ||(p”Y(2+6)(oo 1+e) T |Q|f

)llxallx(o,ap,and (3.11) follows.
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4. Final Remarks

4.1. Equivalent conditions

In ([13] Maly and Pick, 2002) introduced the space
MP (2+e€) Q) =

{QD: (p*((l —-€)/2)— (p*(l €) € L(2+e)(0 1)), d(1- E)} xd
showed with ad-hoc methods that for |Q)] < oo,
Wy Q) € MP o1y (Q) € Hpun (@) (41)

(see also [22] Kolyada,1989,Lemma 5.1). In ([11] Bastero,
Milman and Ruiz) it was proved that

MPoiey(Q) = L(0, 2+ 6))(Q).  (4.2)
For € = 0 the first half of Theorem 1.1. gives WO(HE'Z_E) Q) c
L(oo, i—’;i) Q).

Therefore we could have used the second half of (4.1) combined

with (4.2) and (1.5) to prove that the L(oo 21¢) spaces are optimal

([16] Milman and Pustylnik, 2004).

Likewise, since it is also shown independently in ([11] Bastero,
Milman and Ruiz) that for |Q| < 00,e < 0,L(0,1—¢€)(Q) C
Hi1—¢)(Q) ,we have still another method to prove that these
spaces are optimal.In ([13] Maly and Pick, 2002) the proof of the
fact that MP(;_)(Q) # Hi1—¢)(Q) (and therefore by (4.2) that
L(0,1—€)(Q) # H_¢)(Q)) is indirect. We show that L(c0, 1 —
€)(Q) is not a linear space.We prefer to give here a simple direct
proof. To this end we now exhibit

@ € Hy(Q)/L(0,1 - €)().
Let @(1—€) =X X0 (1—€), with ¢; = ¢™?'. Then a
computation shows that

02022 piliy - 21443 pilill gu) - juine pilidl a2l - dagiow iy G080 drole dlao m




Hiatham Ahmed M. Soliman- Dr- Ahmed seifeldin

9" (1 =€) = 9" (1= €) = 75 L4 C(eyoop (1 = €).There, for
any 0 > € > oo,

1
*k * (1-¢) -
| ora-a-pa-a)owe
0

E

N Z fl i am(1 =€) d1 - €)
B (1-¢)-9 1-¢€
(1 €)

Zf g9
=1i62(1_ci(1 ?) =

i=1

On the other hand, by Hardy’s inequality, —i (( E))

1 (p*(l—E) (1-¢) d(l—E) (E)
oo~ | (m—_> S
> (1 E)d(l—e)(l)
ZU 1—¢€ )

i=1

:__Zz
E.
=1

More generally, the method of the proof of (4.2) ginen in ([11]
Bastero, Milman and Ruiz) can be easily extended to the spaces

Y(2+E)(00, (1 +e)) introduced in this section so that we can

readily show that
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||(p”Y(2+€)(oo,1+E)
—(14€) 1 =€
. ‘ (1- ) )(¢* (—)-¢a- e)) .
Y

It is interesting to observe that the conditions of our embedding
W(1+e,2—e)
0

theorems allow us to describe the 7. 1. sets containing

even for (2 — €) bigger than the critical value (E) . As is well

known in this case WO(HE'Z_E) c L*. Our rearrangement
invariant sets are contained in L%, which is a somewhat
surprising property, since for finite measure spaces L™ is the
smallest rearrangement invariant space. It could be of interest to
study this phenomena in detail. We now give an example of a
result in this direction
([16] Milman and Pustylnik, 2004).

Example 4.1. Let 1 < —e2 < 2,9 € W29 (q),
Suppose that ¢* (%) —@*(1—¢€) is ae. equivalent to a
1-€
. . wf(17€\ *(1_ )
monotone function on (0,1). Then lim;_,_, M# = 0.
(1_6)(z+e)-2—£e
The reason we were able to improve, in some cases, well known
optimal embedding theorems, is the fact that the spaces
Yi24¢) (0,1 + €) are only r.i. sets. It is therefore of interest to
ask if the ¥(5,¢)(o0, 1 + €) spaces are the optimal target for the
Sobolev embedding theorem among all . i. sets.In particular, we
conjecture that for € = 0 we have r. i. hull

(1+€,2-¢€) _ 2+e€
(@) = 1o 2) @
Here the rearrangement invariant hull of
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VVO(HE'Z_E)(Q)
- {<p € M(Q):
e W) (1+€)(1-e).9p" = (p*}.
In this respect we refer the reader to ([4] Bennett, DeVore and
Sharpley, (1981)
where it is shown that for a cube Q, r.i. hull BMO(Q) =
L (0, 0)(Q).
It could also be of interest to consider the modified

rearrangement invariant hull, as defined by ( [27] Netrusov,1989)
modified r. i. hull

(VVO(1+6,2—E) (,Q))

- {(p: 3 e W) (L +6).(1—e).y

- (p*}_
A closely connected problem is to give necessary and sufficient
conditions on Y for the space Y(;4¢)(0,1 + €) to be ar.1i. space.
It follows from our results that a sufficient condition is for ¥ to
satisfy the Q(1 + €)-condition. We conjecture that the condition
is necessary as well. This conjecture is obiously true for L(2 —
€,1 —¢€) spaces and can be readily verified for other spaces
studied in ([15] Cwikel and Pustylnik,1998). Finally we would
like to suggest that the ¥{,,¢) (0,1 + €) spaces introduced in this
section should also be of interest in interpolation theory (cf.[26]
Sagher and Shvartsman, (2002)
Conclusion:

At last The main idea underlying our method is a suitable
extension of the Polya-Szegd symmetrization principle for higher
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order derivatives.It is easy to see that the standard form of this
principle, comparing the first derivatives of a function ¢(x) and
its non increasing rearrangent ¢*(x) cannot be generalized even
to second derivatives. Furthermore we verify the result that
shows that our conditions are best possible.For this purpose we
recall a result of ([6] Edmunds, Kerman and Pick,2000).We
indicate some questions and open problems raised by our
reaseach for this study.Finally we would like to suggest that the
spaces introduced in this study should also be of interest in
interpolation theory.
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