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 المستخلص

)مذود بصياغة     ),M ω  سمبلكتيكية    كمتعدد  طيات سمبلكتي� �زجته أن النظام الدينامي� �كن من المعروفω   باستخدام هذه

 الحقيقة بينا أن أي نظام دينامي� �كن �ثيله هندسيا كمدار لزمرة لي الت�ثلية   علي جبر لي الثنائي لهذه الزمرة.

 

Abstract 

It is well known that a dynamical system may be modeled as a symplectic manifold ( ),M ω  with a 

symplectic  geometric form ω . Using this fact we showed that any dynamical system can be 

represented  geometrically as an orbit of the symmetry Lie group on the dual of the Lie Algebra of this 

group.

Keywords: Dynamical System, Lie Group, adjoint Representation, Dual Representation. 

1. Introduction: 

In mechanics, symmetry can be used to reduce the dynamic, that is, to transform the equations of 

motion into a few set of equations. There are several general kinds of reduction, all based on Lie group 

actions, and all with the property that the reduced system inherits the mathematical structure 

(Lagrangian or Hamiltonian) of the original system. 

Historically Hamiltonian reduced the two second order differential equations of mechanics into a set of 

two first order differential equations. This inspired mathematician to formulate dynamics in the 

reduction skeme using the notation of symmetry group. In fact the set of two first order differential 
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equations of Hamiltonian can be moreover reduced into only one equation using a differential form 

called a symplectic form that gives as an invariant structure on the phase space. 

The underlying geometric structure can best be utilized in the construction of general symmetric 

dynamical system characterized by a symmetry group G . In fact this paper showed that any 

dynamical system is interpreted as an orbit of the symmetry Lie group on the dual of the Lie Algebra 

of this group. 
2. Dynamical System (Description via Lagrangian System and Hamiltonian System):. 

 2.1. Introduction

We have been study classical mechanics as formulated by Sir Isaac Newton, this is called Newtonian 

mechanics is mathematically fairly straightforward, and can be applied to a wide variety of problem. It 

is not unique formulation of mechanics, however, other formulation are possible. Here we will look at 

two common alternative formulations of classical mechanics: Lagrangian mechanics and Hamiltonian 

mechanics. 

It is important to understand that all of these formulations of mechanics equivalent. In principle, any of 

them could be used to solve any problem in classical mechanics. The reason they are important is that 

in some problems one of the alternative formulations mechanics may lead to equations that are much 

easier to solve than the equations that arise from Newtonian mechanics. 

Unlike Newtonian mechanics, neither Lagrangian nor Hamiltonian mechanics requires the concept of 

force, instead, these systems are expressed in terms of energy. 

Although we will be looking at the equations of mechanics in one dimensions, all these formulations of 

mechanics may be generalized to two or three dimensions.  

2.2. Lagrangian Mechanics

The first alternative Newtonian mechanics we will look at is Lagrangian mechanics. Using Lagrangian 

mechanics instead of Newtonian mechanics is sometimes advantageous in certain problem, where the 

equations of Newtonian mechanics would be quite difficult to solve. 

In Lagrangian mechanics, we begin by defining a quantity called the Lagrangian ( )L , which is defined 

as the difference between the kinetic energy  K  and potential energy U : 

L K U= −

Since the kinetic is a function of velocity v  and potential energy will typically be a function of 

position x , the Lagrangian will (in one dimension) be a function of both x  and v :  ( );L x v .  The 

motion of a particle is then  found by solving Lagrange's equation; in one dimension it is  
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( )0 1d L L
dt V V

∂ ∂  − =
 ∂ ∂ 

 2.3. Hamiltonian Mechanics

The second formulation we will look at is Hamiltonian mechanics. In this system, in place of the 

Lagrangian we define a quantity  called the Hamiltonian, to which Hamilton's equations of motion are 

applied. While Lagrange's equation describe the motion of a particle as a single second – order 

differential equation, Hamilton's equations describes the motion as a coupled system of two first – 

order differential equations. 

One of the advantages, of Hamiltonian mechanics is that it is similar in form to quantum mechanics, 

the theory that describes the motion of  particles at very tiny (subatomic) distance scales. An 

understanding of Hamiltonian mechanics provides a good  introduction to the mathematics of quantum 

mechanics. 

The Hamiltonian H  is defined to be the sum of the kinetic and potential energies: 

H K U≡ +

Here the Hamiltonian should be expressed as a function of position x  and momentum p  rather than 

x and v , as in the Lagrangian), so that ( ),H H x p= . This means that the kinetic energy should be 

written as 
2 / 2K p m= , rather  than  

2 / 2K mv= . Hamilton's equations in one dimension have the 

elegant nearly symmetrical  form 

( )

( )

3

4

dx H
dt p
dp H
dt x

∂=
∂
∂= −
∂

3.  Symplectic Description: 

We  show that a symplectic description provided by a symplectic form ω  is in fact equivalence to 

Hamilton equations given by  ( )3 and ( )4 . We shall  use the local form  of  ωwhich is  

dq dpω = ∧  

And the  coordinate description of a Hamiltonian vector field 

1

n

i ii i i

X q p
q p=

∂ ∂= +
∂ ∂

� �

Then 
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1

n

iii i i

ii

X q p
q p

q dp p dq

ω ω
=

 ∂ ∂= + ∂ ∂
 

= −



� �

� �

Using Hamilton's equations  ( )3  and  ( )4  we get 

H HX dp dq
p q

dH

ω ∂ ∂= +
∂ ∂

=

4.  Symmetry Lie Group 

A group G  is called a Lie group if  it is a smooth manifold whose group operations (product and 

inversion) are differential. 

Let   ψ  be a 1−  parameter group action on a differentiable manifold  ( ), : , ,M G M M xψ ψ ε× →

then the infinitesimal generator of this action is given by 

( )0| ,x
dV x

d ε ψ ε
ε ==

Similarly one get the flow or the one – parameter group generated by a vector field   V  as  

( ) ( )exp ,V x xε ψ ε=

Let  a map  
1
:gL G G→  be defined by  

1 1gL g g g= . This actions is called Left action. Then we have:

( )1
:g e eL T G T G

∗
→

A vector field   V  is called Left invariant if   ( )1 1g g g gL V V
∗

=  , shortly   L V V∗ =  . Similarly a 

differential form   ω   is called Left invariant ( )1 1g g g gL ω ω
∗

= , shortly   L ω ω∗ = . 

The set of all left invariant vector field on   M  is called a Lie Algebra of   G and  denoted  by Q   . 

Geometrically  is  the tangent space    eT G  at the identity  e . 

5.  Representation Space (adjoint representation Q ∗  )

Let  G  be a connected simply connected Lie group and let  Q  be the Lie algebra of   G  :   Q  can be 

identified  with the tangent   space   to  G  at the identity ,  e G∈ . 

Each  g G∈  defines a diffeomorphism   gτ of   G  which preserves the identity: 



مجلة علمية محكمة ربع سنوية-العدد السابع شعبان  1442هـ - مارس 2021م 177
5 

 

1: ;g gxg x Gτ − ∈a

The derivative of   gτ   at  e  is therefore  a linear transformation of  Q , denoted  gAd  , the map  

: gg Ada  is called the adjoint representation of  G ;  it satisfies  ' 'gg g gAd Ad Ad=   for all  

, 'g g G∈ . 

Thus  G acts  onQ  as a group of linear transformations. This action induces a second action 'Ad  on 

the dual space  Q ∗  , called  the coadjoint  representation . 

Explicitly: 

( )( ) ( ) ( )1' , , . 5g g
Ad f X f Ad X f Q X Q g G−

∗= ∈ ∈ ∈

For  simplicity ,  . 'gAd f⋅ will be  written   g f⋅ . 

Suppose now that  

{ } ( )| , 6fM g f g G f Q ∗= ⋅ ∈ ∈
o

o o

Is an orbit in  Q ∗   and that  ff M∈
o

 . Each X G∈  generates   a one parameter subgroup  ofG  and 

hence defines a flow on  fM
o

 ;  let Xζ  be the tangent vector field flow. The map: 

( ):f f f X f
Q T M X X ζ→ =

o

a

Is linear and surjective (since the action of  G on  fM
o

is transitive ). Also, if  , 'X X Q∈ , then  

'f fX X= if, and  also if, where  Z Q∈  is such that  ( )exp tZ  leaves f invariant for each   t R∈ . 

From the form of the coadjoint representation, this is equivalent to: 

[ ]( ) ( ), 0 7f Z X X Q= ∀ ∈

Thus the quantity  fω ,  given by: 

( ) [ ]( ) ( ), , ; , 8f f fX Y f X Y X Y Qω = ∈

Is a well-defined skew  symmetric bilinear form on  f fT M
o

;  it  is also non-degenerate since, if  

X Q∈ then: 

( ) ( ), 0 9f f fX Y Y Qω = ∀ ∈

If, and only if, each  ( )exp tX   leaves  f  invariant, that is, if and only if,   0fX = . 

As f  varies, fω  defines a non-degenerate  2 -form   ( )2
fMω ∈ Ω
o

; to show that  ω  is, in fact, a 

symplectic structure, it is only necessary to prove that  0d ω = . 
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Not surprisingly, this follows from the Jacobi identity in Q . In fact, if  ,X Y Q∈  then: 

[ ] [ ] ( ), , 10X Y f fX Yζ ζ =

Thus  if , ,X Y Z Q∈  then: 

( )( ) ( )( ) [ ]( ) ( ), , , , , 11X Y Z f Y Zf
cyclic

d X f X Y Zω ζ ζ ζ ω ζ ζ  = −
 

The second term is zero by the Jacobiidentity  inQ  .  The first term can be computed using the fact 

that, for fixed  X Q∈ ,  the rate of change of    ( )f X  along  Zζ ,  where   Z Q∈  , is [ ]( ),f Z X   

since , for small  t R∈ : 

( )( )( )( ) ( )( ) [ ]( ) ( ) ( )2exp exp , 12tZ f X f tZ X f X t Z X O t− ⋅ = ⋅ = + +

Thus : 

( )( ) [ ]( ) ( ), , , 13f Y ZX f X Y Zω ζ ζ  =
 

And  so the first term also vanish by the Jacobi identity. 

Finally  ω  is invariant under the action of  G on  fM
o

since , for any  , ,X Y Z Q∈ : 

( )( )( )
( )( ) [ ]( ) [ ]( )
[ ]( ) [ ] [ ]( )

,

, , , , ,

, , , , , ,

0

X X Z f

f Y Z X Y Z Y X Zf f
X

f X Y Z Z X Y Y Z X

ζξ ω ζ ζ

ω ζ ζ ω ζ ζ ζ ω ζ ζ ζ = − −
 

     = + +
     

=
6. Construction of the dynamical system using the dual representation 
From the above information each orbit in  Q ∗   has the structure of an classical phase space on which  
G  acts as a transitive invariance group. 
The importance of this result is that essentially all classical phase spaces which admit  G  as a 
transitive invariance group (that is all homogeneous symplectic   G manifolds) arise in this way. 

First , some notation . A symplectic manifold  ( ),M ω   is called a Hamiltonian G  - space for a Lie 

group  G  if there is given  a Lie algebra homomorphism :  

( ): : XR
G C M Xλ φ

∞
→ ∈  

From the Lie algebra of  G  in to the space of real functions (observables) on  M such that 

Conversely, each orbit   fM
o

is a Hamiltonian  G  - space :λ  is defined by : 

 

( )( )( ) ( )( ) ( ); , 14fX f f X f M X Qλ = ∈ ∈
o

1. Each Hamiltonian vector field   
XX φζ ζ=  is complete. 
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2. Any two points  1 2,m m M∈ can be joined by an integral curve of  Xζ for some X G∈ . 

Every Hamiltonian  G - space is also a homogeneous symplecticG  - manifold  ( )14 :  the action of 
each   g G∈  is defined by integrating the (complete) Hamiltonian vector field of the 
corresponding generator in  G  . Moreover , and  this is the important  point, every Hamiltonian  G
- space is a covering space of an orbit in  ( )14 G ∗

. The proof of this is almost trivial : if ( ),M ω   is 
a Hamiltonian  G - space then the map 

: mM G m f∗→ a

Defined by: 
( ) ( ) ( ); , 15m Xf X m m M X Gφ= ∈ ∈

Commutes with the actions of  G on  M and G ∗ and so maps  M onto an orbit in G ∗ : it is not 
hard to see that it is, in fact, a covering map. Suppose now that there is given a classical system 
with a phase space  ( ),M ω  and a transitive invariance group G . If it possible to find a map  

( ):
R

G C Mλ
∞

→   which generates the action of G  and which makes ( ),M ω  into a Hamiltonian  

G -space, then    ( ),M ω   can be identified with a covering space of an orbit in   G ∗  (in fact; if 

M  is simply connected then it must actually be an orbit in   G ∗ ),  ( ),M ω  can then be classified 
purely in terms of the structure of   G . 
For  λ  to exist, two conditions must be satisfied (it is these that are embodied in the qualification 

'essentially'): First, each generator   X G∈  of     G  defines a one parameter group of canonical 
transformations of  M , and hence a locally Hamiltonian vector field  Xζ : for   λ to  exist, each  

Xζ  must in fact be globally Hamiltonian. This will be so if  M  is simply connected or (as in the 

case of ( )3SO ) if  [ ],G G G=  for example; if  G  is semi – simple): Secondly, even if  Xφ  can be 

found for each   X G∈  individually, it will not necessarily follow that   λ  preserves, that is that: 

[ ] [ ] ( ), , , . 16X YX Y X Y Gφ φ φ= ∈

The condition that each  Xφ  can be chosen so that this is true involves the homology of  G . 

However, it is always true (provided the first condition is satisfied) that  λ  can be found for some 

central extension of   G . 
At the purely classical level, therefore, this construction provides an elegant classification scheme 
for the elementary systems with a given invariance group. At the quantum level it assumes a more 
important role. For suppose that  ( ),M ω  is a quantizable symplectic manifold and that G   should 

act as a symmetry group on the phase space of the underlying quantum system, also, according to 

the  argument given  in 5S , this action should be irreducible . If   ( ),M ω  is, in fact, a Hamiltonian  

G  - space, and  G  is simply connected ( ifG  is not simply connected then this gives a 

representation of the universal covering group . For example if   ( )1,3G SO= then  the 

construction gives representation of   ( )2,SL C   and thus leads naturally to the spinor concept),  
then the first part, at least, will automatically be achieved by geometric quantization: each generator 
X G∈  is associated with a classical observable 

X
φ and hence with a vector field 

XXn nφ= on the  
pre quantization line bundle, L . This vector field will be complete (since Xζ  is complete) and will 

generate a one parameter family of unitary transformations of  ( )LΓ . Thus ( )exp X  and hence  G
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has a natural action on   ( )LΓ . An irreducible action can usually be achieved by choosing a G - 
invariant polarization of M . 

Conclusion: 

The study of dynamical systems has attracted the attention of several mathematics researcher. This is 

mainly because of the importance of this study to other branches of applied  Sciences  and 

Engineering.  For instance, Control Theory essentially  involves dynamical system. In our paper we 

have provided the general geometrical formulation of dynamical systems, using abstract spaces and 

transformation Lie groups to investigate the existence of solutions. 

Our main objective has been to construct a geometrical model via which one can study the structure 

of dynamical system. This structure facilitate the existence and classification of solutions of 

geometrical set up. 
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