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ا�������

��لدالة بارمزنا ��لانداو ذات البعد النوني لفضاء إقليدس ، برهنا الحد الأدنى من الطاقة  –لدوامة المكافئة لحل نوع معادلات جينزبورغ ل

  المحلية لدالة الطاقة المقابلة ، توصلنا إلى بعض النتائج على المكافئ في البعد التقديري . 

Abstract 

 We characterize the ����-equivariant vortex solution for Ginzburg-Landau type equations in the �- 

dimensional for Euclidean space and we prove its local energy minimality for the corresponding energy 

functional. We concluded some results on the equivariant in estimate dimensions. 

1. Introduction: 

Adriano Pisante continue the study of energy minimalist property for maps � ∶  ��
→ ��which are 

entire (smooth) solutions of the system 

∆� +  �(1 − |�|� =  0                                         (1.1) 

in dimension � ≥  3 [22]. The case N = 3 has been extensively treated in [18] in the spirit of 

theimportant work [19] concerning the case N = 2 which is the truly relevant one in the studyof vortices 

in Ginsburg–Landau theory of superconductivity (see e.g. [3,20] and referencestherein). 

The system (1.1) is naturally associated to the energy functional 

���
,
��� ��

�

|∇�
|+ �

�

�1 − |�|����
�

(1.2) 

defined for v ∈  X ∶=  H
���

�
 (R

�
; R

�
)  ∩  L

�

���
 (R

�
; R

�
)and a bounded open set Ω ⊂ R

�. Indeed,if u ∈

 Xis a critical point of E(·, Ω)for every Ω then u is a weak solution of (1.1) and thus aclassical solution 

according to the standard regularity theory for elliptic equations. In addition,any weak solution u ∈X of 

(1.1) satisfies the natural bound |u| ≥  1 in the entire space, see [10,Proposition 1.9]. 

A natural “boundary condition” at infinity, namely 

|u(x)|   →  1 as |x|  →  +∞                                               (1.3) 
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is usually added to rule out solutions with values in a lower dimensional Euclidean space and tosingle 

out genuinely N-dimensional solutions of (1.1) with nontrivial topology at infinity.More precisely, 

under the assumption (1.3) the map u has a well-defined topological degreeat infinity given by 

deg� u ∶=  deg �|u||u| , ∂B�� 
whenever R is large enough, and we are interested in solutions satisfying deg∞ u = 0. 

A special symmetric solution � to (1.1) has been constructed in [1] and [13] in the form 

���� = �

|�|,
��|x|�,                                                       (1.4) 

for a unique function �vanishing at zero and increasing to one at infinity. Actually, the map�given by 

(1.4) is the unique �(�)equivariant solution of (1.1), i.e. �(� �)  ≡  � �(�)for any� ∈ �(�)(see 

[13]). Taking into account the obvious invariance properties of (1.1) and (1.2), 

infinitely many solutions can be obtained from (1.4) by translations on the domain and orthogonal 

transformations on the image. In addition, these solutions satisfy �������,��
� → �

�

���

���

|����|as � →
 +∞, so that U has infinite energy in RN . It is also easyto check that �as in (1.4) satisfies |�

(�)|  =

 1 +  �(|�|��) �� |�|  →  +∞and ���� � =  1. In [4], H. Brezis has formulated the following very 

natural problem: 

Is any solution u to (1.1) satisfying (1.3) (possibly with a “good” rate of convergence) anddeg� u =

 ±1, of the form (1.4) (up to a translation on the domain and an orthogonal transformation on the 

image)? 

The answer to the previous problem is affirmative when � =  3, see [18], at least under the assumption 

|�(�)|  =  1 + �(|�| − 2) �� |�|  →  +∞. In higher dimension the answer turns out to benegative in 

general. Indeed, following [1] it is possible to look for solutions of (1.1) in the form 

���� =  � � �

|�|
� ��|�|�,                                            (1.5) 

for suitable harmonic maps � ∈ ��
(����

; ����
)with constant energy density on SN-1 (thisconstant 

being an eigen valus of the Laplace–Beltrami operator on the sphere and the componentsof the maps 

being in turn corresponding Eigen functions) and for suitable profile functions � ∈  ��
(��)increasing 

from zero to one (depending only on this constant density). At least for N = 8a solution of (1.1) in the 

form (1.5) has been constructed in [11] with degree one at infinityfor aharmonic map ω different from 

the identity. 

However, if we add a further assumption on the energy growth at infinity then the previousproblem has 

a positive answer. Indeed we have the following characterization of the equivariantvortex solution 

(1.4). 
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Theorem 1.1. Let � ≥ 3 and let � ∈  � be an entire solution of (1.1). The following areequivalent: 

(i) �satisfies:|�(�)|  →  1 �� |�|  →  +∞,���� � =  ±1 ��� �(�,��)  =  

�

�

���

���
|����

|����
 +

�(����
) �� � →  ∞; 

(ii) up to a translation on the domain and an orthogonal transformation on the image, �is�(�)-

equivariant, i.e., � =  �as given by (1.4). 

The previous characterization of the equivariant solution relies on the division trick introduced in [19] 

and a suitable improvement of the integral identity used in [18] in the case� =  3. As a consequence, 

the result in [18] extends to every dimension but no precise behavior of thesolution at infinity is needed 

in the proof except its energy growth at infinity. Note that, theassumptions on the modulus and the 

degree are only used to infer that u vanish at some point,which readily gives the translation parameter 

in the final formula. 

In the three dimensional situation a more precise characterization of (1.4) was given in [18]in terms of 

local energy minimalist according to the following general definition. 

Definition1.2. A map � ∈  ∶=  �
���

� ���
;��
 ∩ 	

���

�
(��

;��
) is a local minimizer of E(·) if 

���,�
 ≤    ���,�
(1.6) 

for any bounded open set � ⊂ ℝ
�and for every � ∈  �satisfying � −  � ∈ �

�

�
 (�;��

).Obviously 

local minimizers are smooth entire solutions of (1.1) but it is not clear that for each � ≥  3no constant 

local minimizers do exist or if the solutions obtained from (1.4) are locally minimizing. The main goal 

of this paper is to discuss local minimalists in the sense of the definition above for the solutions given 

by (1.4) in any dimension  � ≥  3. Following ideas introduced in [18] in the three dimensional case, 

first we show existence of a no constant local minimizers� vanishing at the origin and satisfying the 

correct energygrowth at infinity (see Theorem 3.4 for the precise statement) and then, arguing as in the 

proofof Theorem 1.1 we show its symmetry, i.e. we show that �is given by (1.4). 

The existence of a no constant local minimizes of �(·)is ultimately related to the minimalityand 

uniqueness property of ��(�)  =  

�

|�|
for the Dirichlet integral on the unit ball among mapsin 

�
��

�
 (��

;  ����
), which makes a strong connection of our problem with the theory of minimizing 

harmonic maps. These two properties of u∞ are well known for � =  3 (see [5]) and for� ≥  7 (see 

[14] and [2] respectively), see also [22]. Some years later a striking simple proof of the 

minimality.property of u∞ was given in [15] for any � ≥  3 and then uniqueness follows  

The construction of a nonconstant local minimizers relies indeed on the analysis of the vorticityset for 

solutions �to 
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 (��)  � ∆� + ��� (1 − |�|�) = 0      �� ��,

   � = ��                                       �� ���,

� > �, (1.7) 

which are absolute minimizers of the Ginzburg–Landau functional ��(�,��)on �
��

�
  (��; ℝ

�
) 

where 

����,��: = � ��
�

�����     ���ℎ �����: 1
2

|∇�|� + ��
4

(1 − |�|�)�

We will show that ��  →  �� �� ��
  (��; ℝ

�
) �� � →  ∞, so that the zeros of ��will tend to 

the origin. Thus, up to translations, we will obtain a locally minimizing solution to (1.1) as alimit of 

��
�

(�/��)for some sequence ��  →  +∞. In addition, the correct energy bound, namely 

�(�,��)  

�

�

���

���
 |����

|���� for all R >0, will follow from the explicit boundary condition

in (1.7) which gives the bound ��(��,��) ≤   

�

�

���

���
 |����

| and the following celebrated monotonicity 

formula proved in [17]. 

Lemma 1.3 (Monotonicity formula). Assume that � ∶  � →  ℝ
� is a smooth solution of the systemu +

 λ
�
u(1 − |u|

�
)  =  0in some open set Ω ⊂ ℝ

� and � >  0. Then, 

�

�
���

����,��(��)� = �

�
���

����,��(��)� + � �

|���
�
|�

�
��

�
�\�

�
��

�
�

� �
�

�
|���

�
|

�dx 

+

�
�

�
� �

�
���

�

�
� (1 − |�|�)� �� ��
�
�
(�

�
)

,                                        (1.8) 

for ��� �� ∈  � ��� ��� 0 ≤  �  ≤ � ≤   ����(��,��).
As already outlined above, once we have a local energy minimizer vanishing at the origin andwith the 

correct bound on the energy at infinity, we can argue as in the proof of Theorem 1.1 andwe obtain the 

main result of the paper. 

Corollary1.4. [22]: Let � = 3 + �, � ∈ ℕand let U be the solution of (1.1) given by (1.4). Then U is a 

local minimizer of the energy E according to Definition 1.2. In particular, U is stable and the 

followinginequality holds for any bounded open setΩ ⊂ ℝ
���and for any � ∈ �

�

�
(�; ℝ���

),

��∇� 
�� + �|�|� − 1�|� |� + 2 |�.� |� �� ≥ 0.                                  (1.9)

The stability inequality was already known. Indeed, in [13] a direct stability analysis for thelinearized 

operator at �was performed in any dimension� = 3 + �, � ∈ ℕ, in the same spirit of the 

twodimensional result in [9], using block diagonalization and Perron–Frobenius type arguments.Here, 

instead, inequality (1.9) is obtained as a straightforward consequence of a much deeperproperty of �, 

namely the local energy minimality property given in Definition 1.2, with respectto arbitrarily large 

(but compactly supported) perturbation. 
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Finally, note that both Theorem 1.1 and Corollary 1.4 also apply to the case N = 3, which 

was essentially covered in [18]. Here, however, the proofs are much simpler and do not rely neither on 

the deep concentration-compactness and quantization results in [17,16], nor on a preciseasymptotic 

analysis at infinity inspired to the one for harmonic maps at isolated singularitiesgiven in [21], which 

was an important ingredient in [18]. 

The plan of the paper is the following. In Section 2 we review the properties of the equivariantsolution 

(1.4) and we prove Theorem 1.1. In Section 3 we study minimizing solutions(��), weprove Theorem 

3.4 and the main result of the paper. 

2. A characterization of the EquivariantSolution: 

In this section first we collect some preliminary results about the equivariant entire solution (1.4) and 

then we prove its characterization in terms of topological degree and asymptoticgrowth rate of the 

energy at infinity. 

The existence and uniqueness statement and the qualitative study of the profile function �in (1.4) are 

essentially contained in [1,12,13]. In the following lemma we stress the asymptoticbehaviour at 

infinity. The proof is exactly the same as in [18] and will be omitted 

Lemma 2.1. There is a unique solution� ∈ ��
([0, +∞)) �� 

� ���
+

���

�
 ��

−

���

��
� + ��1 −  ��� = 0

��0� = 0                     ���     ��+∞� = 1.

                                          (2.1) 

�� ��������, 0 <  � (�)  <  1 ��� ���ℎ � >  0,  ��
 (0)  >  0, � �� �������� ���������� 

��|���
(�)|+ � �����|� − 1 − ���1 − � (�)��| = ��1�  �� � → +∞,          (2.2) 

and 
�

����
� ���

�
( ��

)
�
+

���

�
+ �� (���

�
)
�

�
��

�
 ����

 �� →

�

�

���

���
 �� � → +∞ .         (2.3) 

A straightforward consequence of the previous lemma is the following result. 

Proposition 2.2. ��� � � ∈  ℝ
�
 ��� � ∈  �(�). Consider the function � ∶  [0, +∞)  →  [0, 1)givenby 

Lemma 2.1 and define 

���� ∶ = ��� − ���
|� − ��|  ��� − ��� . 

Then w is a smooth solution of �1.1�. In addition, 0 < |w�x�| < 1 for each x 

≠  x�, w satisfies |w�x�| =  1 +  O�|x|���as |x| →  ∞, deg� w = det T =  ±1and 

lim�→��

�

�
���

� ��

�

|∇�(x)|� + (����(�) �

�

)
�

�
��

�
�
(�

�
)

 �� �
�

���

���
������(2.4)
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Proof. As in [1] and [13], w is smooth and it is a classical solution of (1.1) and clearly 

|�(�)|  →  1 �� |�|  →  ∞,����� =  ��� �. Finally, a simple calculation yield

1

2

|∇��x�|� + (1− ��(x) �2)
2

4

=

1

2

�����− ��
��� + �� − 1�

2

����� − ��
���

|�− ��
|�

+

(����(|���
�
|
�
)�
�

�
(2.5) 

whence (2.4) follows easily from (2.3).  

Remark 2.3. Note that, in view of (2.2) and (2.5), the function  �(�)above also satisfies thecondition 
�

�
|��(�)|�  + 

(��|�(�) |
�
)
�

�
=  

���

�

�

|�|
�
 +  �(|�|��) �� |�|  →  ∞for any �� ∈ ℝ

�, whenceE�w, B�
� =

�

�

���

���
������ + (����

) �� R → ∞. 

The main ingredient in the proof of Theorem 1.1 is given by the following auxiliary resultwhich is of 

independent interest and will be used also in the next section. 

Proposition 2.4 . ��� � ∈ ��
(ℝ

�
; ℝ

�
)an entire solution of (1.1) and suppose that�(0)  =  0and 

�(�, B�) ≤   

�

�

���

���
������for each � >  0. Then, there exists � ∈  �(�)such that�(�)  =  � �(�),

where �is given by (1.4). 

Proof. First we apply the division trick of [19] to prove that u has the form (1.5) with the 

function� as in Lemma 2.1. Then a simple argument calculating the energy at infinity willgive the 

conclusion.��� � ∈  ��
([0,∞))given by Lemma 2.1 and define 

����: = ����

��|�|�
                                             (2.6) 

The following lemma gives the basic properties of the function v that we need in the sequel. 

Lemma 2.5. Let �as defined in (2.6). Then � ∈  ��
(ℝ

�
 \ {0};ℝ

�
), 

���� = � �

|�|
+ ��1� ��� ∇�

��� = ∇ �� �

|�|
�+ ��|�|���,�ℎ��� � ≔

∇
�
���

�
����

 ,            (2.7) 

��|�| → 0 ���   �������
lim

�→�

1

����
 �(�,��) ≤

1

2

� − 1

� − 2

������,
lim�→� � �

����

(��|�|
�
)

|�|�
�� = 0

�
�

,                                                 (2.8) 

Proof. Since u is smooth the same holds for v outside the origin and (2.7) follows easily from Taylor 

expansion of u near the origin. In order to prove (2.8) is suffices to show that 
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� (1 − |�|�)
4

�� = 0(����
)

�
�

= � (1 − |�|�)
4

��,
�
�

and  

lim

�→�

1

����
, � 1

2

|∇�|��� lim
�→�

1

����
� 1

2

|∇�|���,
�
�

�
�

as R → ∞, where the last limit exists because of the monotonicity formula (1.8). Indeed, (2.8)follows 

easily from the two equalities above combining the definition of �, the energy growth ofu at infinity 

and Young’s inequality. To prove the first statement above, it is enough to note that bydefinition 

|1 − |�|�|  ≤  ���
 (1 − ��

 + |1 − |�|�|)when |�|  ≥ 1. Thus, the claim on the potential partof the 

energy follows easily from Young’s inequality and the corresponding property for u (thelatter being a 

simple consequence of the monotonicity formula exactly as in  

that � (|�|)  =  1 +  �(|�|��) ��� ��
 (|�|)  =  �(|�|��)infinity. Since (2.2) yields 

|∇�|� =

1

��
|∇�|� + |�|� ��

�

� �
�

−

��

��

�
�� |�|� = �1 + ��1��|∇�|� + (|�|��)

as |�|  →  ∞, the conclusion follows by integration and straightforward manipulations. 

As �solves (1.1) and �solves (2.1), simple computations lead to 

∆�. ��� �1 − |�|�� = −2

�
�

�

�

|�|
. ∇� −

���

|�|
�
 �.                             (2.9) 

On the other hand, as ���� ��

��
=

�

|�|���
∇�straightforward calculations give 

∆�. ���� ��
�� =

� − 2

|�|���
� ���� �

�

+ ��� �−1

2

|∇�|� �
|�|���

+

1

|�|���
∇�. ���� �

����1 + |�|��. ���� ��
�� = ��1 + |�|��

4

��2 ���
|�|���

 +

2��

|�|���
�

−��� � �
|�|���

��
�1 + |�|���

4

�

−

� − 1

|�|�  �. ���� ��
�� = ��� �� − 1

2

�
|�|� �1 − |�|���

Thus, multiplying Eq. (2.9) by ���� ��

��
and taking the previous identities into account yields 

0 ≤ ����; = ������
�

�� − 2

|�|���
+ 2

��

�
1

|�|���
�+ ��1 − |�|���

4

��2 ���
|�|���

+

2��

|�|���
�
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= ��� ����,(2.10) 

Where  

����; = �
� |∇�|� �

|�|���
−

1

|�|���
∇�. ���� +

�
|�|���

��
�1 + |�|���

4

+

� − 1

2

�
|�|� �1 − |�|��.

When integrating (2.10) over an annulus, the inner boundary integral is controlled by the 

following lemma. 

Corollary 2.6.[22]. For each � = 3 + � , � ∈  ℕwe have� �(�) 
|�|��

.  

�

|�|
 �����

→ 

���

�
|����| �� � →

 0. 

Proof. By definition of �we have 

� �(�) 
|�|��

�
|�|  �����

= �
|�|��

� �

|�|
�����

��
�

|∇u|� − ���
��
��� �

�

|�|
�����

���|�|
�
�
�

�
+

�����

�

���|�|
�
�

|�|
���

�  �����            (2.11) 

Taking (2.7) into account, as |x| → 0 we have 

|∇u|� = �∇ �� �
|�|��

�

+ 0�|�|��� ,     ���� = 0�|�|���,       1 − |�|� =

|�|� − |��|�
|�|� + 0(1)

Consequently 

� ����.
|�|��

�
|�|  ����� 

= �
�|�|���

� 1

|�|�
1

2

�∇ �B �
|�|��

�

+

2 + �
2

|�|� − |��|�
|�|��� + �(|�|����)�  �����

�
|�|��

� 1

|�|�
1

2

�∇ B �
|�|�

�

+

2 + �
2

|��|� − |��|�
|�|��� �   �����

2 + �
2

|����| + 0(1) 

As � → 0 .                                                                                                                        (2.12) 

Since a direct computation gives 

�
|�|��

� 1

|�|�
1

2

�∇ �A �
|�|��

�

−

2 + �
2

|��|�
|�|����  ������

= 0 

for any constant matrix � ∈ ℝ
���×���, the conclusion of the lemma follows.  
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Integrating (2.10) on {� <  |�|  <  �}and taking Lemma 2.6 into account, as � →  0 we obtain 
���

�

|����| + ���� � �(�) 
|�|��

�

|�|
 �����(2.13) 

where�(�)  =  �  �(�) �� 
�
�

and 

� �(�) 
|�|��

�
|�|  �����

= �
|�|��

� 1

|�|� �
1

2

|∇v|� − ������
�

��  �����

+�
|�|��

� �

|�|��� ��
��

���|�|
�
�
�

�
+

���

�

�1 − |�|�� �

|�|���
� �����(2.14) 

Multiplying (2.13) by��, integrating from 0 to ��and dividing by ��� we have 

1

2

2 + �
1 + � |����|+

1 

��� � g�����
 �� + 1 

�����
�

�

� ������
�

�

�
��

��

≤

� 

��
��� ��

���,���
� + � 

��
���

�
�
��

���

�

���|�|
�
�

|�|
�

 �� .                                                 (2.15) 

Letting ��  →  ∞and taking Lemma 2.5 into account we infer 

lim

����

� 1 

����� �
��

�
��

g������� + 1 

����� � ������
�

�

�
��

 ��� = 0,

whence |�|  ≡  1 ��� ��
��
  ≡  0, because g(R) is an increasing function. As a conseqence  of (2.6) we 

see �ℎ�� |�(�)|  =  � (|�|)and it is a radial function. In addition, �(�) = ω � �

|�|
�for some 

smoothharmonic map � ∈ ��
(����

;  ����
)(harmonic being the limit of u at infinity, see [17]), 

i.e.(1.5) holds with the profile function f given by Lemma 2.1. 

Clearly ∆�(�) ·  �(�)  =  −|�(�)|�(1 − |�(�)|�)  =  −��
(|�|)(1 − ��

 (|�|)), so it is a radial 

function. On the other hand (1.5) implies 

∆�.� = ����� +

2 + �
|�| ��� +

�
|�|� ∆��� .�� = ����

+

2 + �
|�| ���

+ 

��

|�|� ∆��.�
, 

where 0 is the Laplace-Beltrami operator on.���� Since ω has values on the sphere and ∆��and �are 

parallel, from the previous formula we conclude that ∆��  ·  �is a radial unctionin ℝ���, therefore 

−∆��  =  �� �� ���� for some �  0, �. �.� is an eigenharmonic map andhence |∆�� |�  ≡
 � �� ����(here �� is the tangential gradient on the sphere). Finally, since��� 

�

|�|
�� = 

� 

|�|�
 and (1.5) 
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holds, the assumption on the asymptotic energy bound of u togetherwith (2.2) easily implies � =  2 +

�. Thus, the components of �are spherical harmonics of degreeone, i.e. they are restrictions to the unit 

sphere of entire affine functions in RN and this fact inturn yields ���� =  � �

|�|
= � �

|�|
 for some 

constant matrix T . Since v takes values on the spherewe infer T ∈O(N) and in view of (2.6) the proof is 

complete.  

As a direct consequence of the previous results we have a straightforward proof of Theorem 1.1. 

Proof of Theorem 1.1. (i) ⇒(ii) Since u satisfies (1.3) and ����� ≠  0 we deduce that 

�(��)  =  0 for some �� ∈ ℝ
���. Thus, without loss of generality we may assume �(0)  =  0 upto 

translations. Then, the monotonicity formula (1.8) and the asymptotic energy growth yield���,��
� ≤

�

�

���

���

|����|���� for any � >  0, and the conclusion follows from Proposition 2.4. 

(i) ⇒ (ii) Since u is given by (1.4) the claim follows from Proposition 2.2.  

3. Local Minimality of the Equivariant Solution: 

A basic ingredient in the construction of a nonconstant local minimizer is the following smallenergy 

regularity result taken from [17] (see also [8]). 

Corollary 3.1. [22]. There exist two positive constants η� >  0and C� >  0such that for anyλ = 1 +

ε, ε ∈ ℕandany u ∈ C
� 
(B�� (x�) ℝ

���satisfying 

∆u + �1 + ε��u�1 + |v|�� = 0 in B��
�x��,

with �

����
���

B���(u, B��
�x��η�, then
R
�
sup�

����
�

e���
�u� ≤C�

�

�������
E��u, B��

�x���.(3.1) 

We will also make use of the following boundary version of Lemma 3.1 (see [6,7]). 

Corollary 3.2.[22].Let g ∶  ∂B�  →  S
���be a smooth map. There exist two positive constants η� >

 0and C� >  0such that for any λ = 1 + ε, ε ∈ ℕ, 0 <  � <  �1/2, x� ∈  ∂B�and any u ∈C�(B��  ∩

B��(x�);ℝ
���

)satisfying u = g on ∂B�  ∩  B��(x�)and 

∆u + λ
�
u�1 + |u|�� = 0 in B� (x�)

With �

����
���

E���(u, B�  ∩ B��(x�)  ≤ η�, then

R
�
sup�

�∩
�
����

�

e���
�u� ≤C�

�

�������
E����u, B� ∩  B��

�x���.             (3.2) 

The key result of this section is the following proposition on the behaviour of minimizers 

in the minimization problems (P���)defined in (1.7). This fact is a weaker extension to 

higherdimension of the corresponding one in [18]. 
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Corollary3.3.[22]. Let N = 3 + ε, ε ∈ ℕand B� = {x ∈ ℝ
���

 s. t. |x|  <  1}. For each λ = 1 + εlet 

u��� ∈  H
�
 (B�; ℝ

���
)be a global minimizer of E���(·, B�) over H

��

�
 1 (B�; ℝ

���
). Then  u���(x) →

 u�(x) ∶=  

�

| �|
in H��B�; ℝ

����as (1 + ε)  →  ∞. In addition,u���(x)  →  u�(x)in C
���

�
  (B�� \{0})and for 

any δ ∈ �0, 1�,����� ��|u���| ≤  δ�, �0�� =  ��1�as (1 + ε)  →  +∞where �����denotes the 

Hausdorff distance. 

Proof. Let us consider an arbitrary sequence (1 + ε)�  →  +∞, and for every � ∈  ℕ let �� ∈ 

��
(B�;  ℝ

���
)be a global minimizer of �

(���)
�

 (·, ��)under the boundary condition u�|��
�

= �(which 

clearly exists by standard direct method). It is well known that u�satisfies |u�|  ≤  1 andu� ∈ c
�
B�� |) 

for every � ∈  ℕby a simple truncation argument and elliptic regularity respectively. 

Step1.We claim that u�(x) → �� (�): =  �/|�|strongly in H
�
(B ;ℝ

���
)Since the map 

��isadmissible, one has 

1

2

� |∆u�|� ≤ +E
(���)�

�u�, B�
� ≤ E

(���)�
�u�, B�

�
�
�

1

2

� |∆u�|� =

�
�

1

2

2 + ε 

1 + ε

|����|

for every � ∈ ℕ. (3.3) 

As a consequence, {u�} is bounded in H�
(B�; ℝ

���
)and up to a subsequence, u� → u

∗
  in weakly in 

H
�
(B�; ℝ

���
)for some ����valued map �satisfying u

∗
| ∂B�  =  �. By [15,14] and [2] the map u∞ is the 

unique minimizer of � ∈ ��
 (��;�(��)

)  ↦  ��|��|� under the boundary condition  ����  =  �.. In 

particular, �  |��
∗
|
�
 ≥ �  |���|

�

�
�

�
�

which, combined with (3.3), yields 

1

2

� |∆u�|� →

�
�

1

2

� |∆u
∗
|� =

�
�

1

2

� |∆u�|� as n 
�
�

→ +∞

Therefore�
∗
≡ ��and �� ≡ ��strongly in H�

(B�; ℝ
�
)

Step2.Let � ∈ (0, 1)be fixed. We now prove that the family of compact sets �� ∶=  {|u�|  ≤  δ}  →

 {�}in the Hausdorff sense. It suffices to prove for any given 0 <  � < 1,�� ⊂ B
for every �large 

enough. Since u∞ is smooth outside the origin, we can find 0 <  � ≤  ���(�/8, ��/4)such that 

1

�	��
� |∆u�|� < ��� �����

�; = �
�
�
  ∩ �

��
(�)

 for every   x ∈ B�� ∖ B�,

where �� and � �are given by Lemma 3.1 and Lemma 3.2 respectively. From the strong convergenceof 
un to �� in ��, we infer that 

�

σ

N−2

E�
�

�u�, B��
�x�� < �  for every   x ∈ B�� ∖ B
 (3.4) 

whenever � ≥  �� for some integer �� independent of �. Next consider a finite family of points 
{��  }�∈� ⊂ B�� ∖ B
 satisfying ���(��) ⊂ �� if �� ∈ �� and 
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B�� ∖ B� ⊂ � � ������
�
�
∈�

�

�⋃� � �������
�
�
∈��

�

�.

In view of (3.4), for each � ∈ � we can apply Lemma 3.1 in ���(��) if �� ∈ �� and Lemma 3.2 
in �� ∩ ��� (��  ) if �� ∈ ��� to deduce 

Sup
��
�
∖�

�

e
(���)

�

���
� ≤ C σ

��for every � ≥ ��,

for some constant � =  ���{��,��} independent of �. By Ascoli Theorem the sequence {��}is 
compact in ��

( B�� ∖ B�), thus ��  → �� and |��|  →  1 uniformly in B�� ∖ B� . In particular|��|  >

 � �� B�� ∖ B�whenever n is large enough, i.e. �� ⊂ �� for every � sufficiently large. 
The main step in our study of local minimality of (1.4) consists in the following result giving 
the existence of nonconstant local minimizers. 
Corollary 3.4.[22]. For each N = 3 + ε, ε ∈ ℕthere exists a smooth nonconstant solution u:ℝ���

→

ℝ
���of (1.1)which is a local minimizer of E(∙). In addition, u�0� =  0 and ℝ���

E�u, B�
� ≤

�

�

���

���

|S���|for R > 0. 
Proof.Consider a sequence (1 + �)� → +∞and let u�be a minimizer of 
�
(���)

�

 (・,��)onH
��

� �B�;  ℝ
����Sinceu� ∈ C

�
 (B��; ℝ

���
)and Proposition 3.3 holds, by elementary 

degree theory we may find�� ∈ �� �⁄ such that�� = 0 for every �sufficiently large and �� → 0 as � →

∞.

Setting ��: =  �1 + ����1 − |��|�,�� → +∞as� → +∞, and we define for� ∈ ��
�

,���(�) ∶=
��((2 + ε)�

��
 � ��)so that ��clearly satisfies 

∆��� + |����1 − |���|��     �� ��
�

����0� = 0 and  |���|  ≤ 1for every �. Moreover taking (3.3) and the strong convergence of ��in��into 
account, it is easy to see that 

��� ���
�→��

��

���
   �����,��

�

� = ���
�→��

((1 + �)���� ��)
�����

�����
�

���� (��))

≤  

1

2

2 + �
1 + � �S

�����
��

Then we infer from standard elliptic regularity that, up to a subsequence, u�� → uin 
C
���

�
 (ℝ

���
; ℝ

���
)for some map � ∶  ℝ

���
 → ℝ

���solving ∆� + ��1 − |��
|�� = 0 in ℝ���and 

satisfying�(0)  =  0. Next we deduce from (3.5), the monotonicity formula (1.8) and the 
smoothconvergence of ���to �, that sup���R����

 E�u, B�
� ≤ 

�

�

���

���
�S������� Finally, the local 

minimalityof u��easily follows from the minimality of u��(i.e. of u�) and the convergence of u��to u 
inC

���

� �ℝ���
; ℝ

����.
Proof of Corollary1.4. Let u be the local minimizer given by Theorem 3.4. Since �(0) =  0 and�has 
the correct energy bound at infinity we can apply Proposition 2.4 to conclude that up toisometries� =
 �as given by (1.4), i.e. the equivariant solution �is locally energy minimizing.Finally, the stability 
inequality (1.9) is a straightforward consequence of the energy minimalityby computing the second 
variation. 
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